The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f...The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.展开更多
A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and...A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and 0.09Ni/ZSM-5(130).To determine the interaction between the Ni species and acid sites on the surface of the catalyst,the catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-vis spectroscopy.The performance of the catalysts for the catalytic oligomerization of 1-hexene was investigated in detail.The nickel species were found to be uniformly distributed in all the catalysts.It was discovered that the oligomerization activity of the catalyst can be improved using Ni species;however,the contribution of Brønsted acids in oligomerization reactions is greater than that of Ni sites and Lewis acids.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibri...The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].展开更多
Preparing both safe and high-performance lithium-ion batteries(LIBs) based on commonly used commercial electrolytes is highly desirable,yet challenging.To overcome the poor compatibility of conventional small-molecula...Preparing both safe and high-performance lithium-ion batteries(LIBs) based on commonly used commercial electrolytes is highly desirable,yet challenging.To overcome the poor compatibility of conventional small-molecular flame-retardants as electrolyte additives for safe LIBs with graphite anodes,in this study,we propose and design a novel low-cost flame-retardant oligomer that achieves an accurate and complete reconciliation of fire safety and electrochemical performance in LIBs.Owing to the integration of phosphonate units and polyethylene glycol(PEG) chains,this oligomer,which is a phosphonatecontaining PEG-based oligomer(PPO),not only endows commercial electrolytes with excellent flame retardancy but also helps stabilize the electrodes and Li-ion migration.Specifically,adding 15 wt% of PPO can reduce 70% of the self-extinguishing time and 54% of total heat release for commercial electrolytes.Moreover,LiFePO_(4)/lithium and graphite/lithium cells as well as LiFePO_(4)/graphite pouch full cells exhibit good long-term cycling stability.展开更多
The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show ...The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show that(BF_(3))_(2)·n-C_(4)H_(9)OH catalyzes the 1-decene oligomerization reaction with higher activity compared to BF_(3)·n-C_(4)H_(9)OH,which is the most catalytically active substance in the BF_(3)/n-C_(4)H_(9)OH catalyst system.The reaction energy barriers and heats of reaction of chain initiation,chain growth,and chain termination in BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization are calculated to reveal the product distribution.The calculation results show that the contents of the oligomerization reaction products in descending order are trimer,tetramer,pentamer,and dimer.The calculated results were consistent with the experimentally obtained product distribution.展开更多
AIM: To examine genetic variation of nucleotide oligomerization domain 1 (NOD/) and NOD2, their respective influences on Crohn's disease phenotype and gene-gene interactions. METHODS: (ND1+32656*1) NOD1 polym...AIM: To examine genetic variation of nucleotide oligomerization domain 1 (NOD/) and NOD2, their respective influences on Crohn's disease phenotype and gene-gene interactions. METHODS: (ND1+32656*1) NOD1 polymorphism and SNPS, SNP12 and SNP13 of NOD2 were analyzed in 97 patients and 50 controls. NOD2 variants were determined by reaction restriction fragment length polymorphism analysis. NOD1 genotyping and NOD2 variant confirmation were performed by specific amplification and sequencing. RESULTS: The distribution of NOD1 polymorphism in patients was different from controls (P = 0.045) and not altered by existence of NOD2 mutations. In this cohort, 30.92% patients and 6% controls carried at least one NOD2 variant (P 〈 0.001) with R702W being the most frequent variant. Presence of at least one NOD2 mutation was inversely associated with colon involvement (9.09% with colon vs 36.4% with ileal or ileocolonic involvement, P = 0.04) and indicative of risk of penetrating disease (52.63% with penetrating vs 25.64% with non-penetrating or stricturing behavior, P = 0.02). L1007finsC and double NOD2 mutation conferred the highest risk for severity of disease (26.3% with penetrating disease vs 3.8% with non-penetrating or stricturing behavior presented L1007finsC, P = 0.01 and 21.0% with penetrating disease vs 2.5% with non-penentrating or stricturing behavior carried double NOD2 mutation, P = 0.007). Exclusion of patients with NOD2 mutations from phenotype/NODl-genotype analysis revealed higher prevalence of *1*1 genotype in groups of younger age at onset and colonic location.CONCLUSION: This study suggests population differences in the inheritance of risk NOD1 polymorphism and NOD2 mutations. Although no interaction between NOD1-NOD2 was noticed, a relationship between disease location and Nod-like receptor molecules was established.展开更多
BrФnsted-acidic zeolite and zeotype materials are potential catalysts for the conversion of ethene to higher alkenes. In this study, two materials with AFI structure but different acid strength, H-SAPO-5 and H-SSZ-24...BrФnsted-acidic zeolite and zeotype materials are potential catalysts for the conversion of ethene to higher alkenes. In this study, two materials with AFI structure but different acid strength, H-SAPO-5 and H-SSZ-24, were subject to studies of ethene, cis-2-butene and ethene-butene mixture conversion under conditions where C3-C5 alkene formation is thermodynamically favoured over higher hydrocarbons(673-823 K, 1 atm). Ethene and cis-2-butene partial pressures were varied in the range 9-60 and 0.9-8.1 kPa, respectively, and contact times were varied in the range 3.78-756 and 0.573-76.4 s.μmol H+/cm^3 over H-SAPO-5 and H-SSZ-24, respectively. Less than 1% conversion of ethene and less than 10% conversion of butene was obtained in the range of conditions used for elucidation of rate parameters. The ethene conversion rates were more than an order of magnitude higher over the more acidic H-SSZ-24 than over H-SAPO-5(6.5 vs. 0.3 mmol/mol H+.s at 748 K, Pethene = 33 kP a), with corresponding lower reaction order in ethene(1.5 vs. 2.0 at 673 K) and lower apparent activation energy(52 vs. 80 kJ/mol at 698-823 K). Propene selectivity was substantially higher over H-SSZ-24 than over H-SAPO-5(68% vs. 36% at 0.5% ethene conversion). A similar difference in apparent reaction rates was observed for cis-2-butene conversion over the two catalysts, and for co-feeds of ethene and cis-2-butene. However, the cis-2-butene conversion to C3-C5 alkenes was found to be severely influenced by thermodynamic limitations, impeding a detailed kinetic analysis, and leading predominantly to isobutene formation at the highest temperatures.展开更多
Among the inherent drawbacks of conducting polymers are the limited processibility, uneven polydispersity inmolecular weigh and the existence of structure defects, which become the obstacles for many electronic, optic...Among the inherent drawbacks of conducting polymers are the limited processibility, uneven polydispersity inmolecular weigh and the existence of structure defects, which become the obstacles for many electronic, optical andbiological applications that demand the materials to have well-defined structures and high chemical purity. To solve theseproblems, our research in the last decade or so has focused on the synthesis of electroactive oligomers of well-definedstructures, controllable molecular weighs, narrow or uniform polydispersity. We have developed a general strategy for thesynthesis of such oligomers based on the theory of non-classical or reactivation chain polymerization. The aniline oligomerswith minimum 4 nitrogen atoms and 3 phenylene rings exhibit similar characteristic redox behavior and electroactivity aspolyaniline. Electronic conductivity of the oligomers of 7 or 8 aniline units approaches that of polyaniline. Solubility of theoligomers is much improved over that of conventional polyaniline. Various functional groups can be introduced into theoligomers either by proper selection of starting materials or by post-synthesis modifications via common organic reactions.The functionalized oligomers undergo further polymerizations to afford a variety of new electroactive materials, includingpolyamides, polyimides, polyureas, polyurethanes, polyacrylamides and epoxy polymers. Numerous potential applications,particularly as anticorrosion materials, are discussed for the oligomers and their polymeric derivatives.展开更多
The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady...The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady-state spectral measurement shows that the increasing of fluorene-vinylene (FV) group could lead to the red shift of absorption spectra and restrain the excimer formation between oligomers. Quantum chemical calculations exhibit that the energy levels of HOMO, LUMO, and the band gap gradually converge to a constant in accompany with the increasing of FV unit. Meanwhile, the electronic cloud which distributes on the branch arms, also gradually enhances and makes the absorption spectral shape of oligomers become similar to that of branch arms step by step. The time-resolved fluorescence tests exhibits that the lifetime of excimer emission would be almost invariable after the number of FV group in oligomer is ≥2. In nonlinear optical test, the two-photon photoluminescence efficiency and two-photon absorption cross-section will both gradually enhance and be close to an extremum after the number of FV unit is equal to 4. These results will provide a guideline for the design of novel photo-electronic materials.展开更多
Background Coronary artery calcification(CAC)is common in end-stage renal disease(ESRD)patients,and the extent of CAC is closely related to cardiovascular outcomes in ESRD patients.Cartilage oligomeric matrix protein(...Background Coronary artery calcification(CAC)is common in end-stage renal disease(ESRD)patients,and the extent of CAC is closely related to cardiovascular outcomes in ESRD patients.Cartilage oligomeric matrix protein(COMP),as a component of the vascular matrix,has been found to be an inhibitor of arterial calcification in basic studies.However,there is no clinical research on the correlation between COMP and CAC in maintenance hemodialysis(MHD)patients.The aim of this study was to explore the relationship between serum COMP levels and CAC and cardiovascular events in MHD patients.Methods Serum COMP levels were compared between 54 MHD patients and 66 healthy people.MHD patients were then divided into three groups according to the tertiles of the concentration of COMP level and were followed up for major adverse cardiac events(MACEs),which were defined as a combined end point of new onset angina pectoris,nonfatal myocardial infarction,heart failure,coronary artery revascularization,hospitalization due to angina pectoris and all-cause deaths.The CAC score was calculated based on computed tomography scans.Results The serum COMP level in MHD patients was significantly higher than that in the general population[984.23(248.43-1902.61)ng/mL vs.219.01(97.26-821.92)ng/mL,P<0.01].Serum COMP levels were positively correlated with CAC(r=0.313,P=0.021)and serum parathyroid hormone in MHD patients(r=0.359,P<0.01).Linear regression suggested that after adjusting for age,fasting blood glucose(Glu)and glycosylated hemoglobin(HbAlc),CAC score was an independent predictor in the final model for COMP level(β=0.424,t=3.130,P<0.01).The receiver operating characteristic(ROC)curve showed that COMP≥994 mg/mL had 68.0%sensitivity and 72.4%specificity for the prediction of severe CAC[area under the curve(AUC):0.674,P=0.030,95%CI:0.526-0.882].After a median follow-up of 16 months(8-24 months),there was no difference in the incidence rate of MACEs between the upper,middle and lower serum COMP groups.Conclusions Our study found that MHD patients have higher levels of circulating COMP than controls.The serum COMP level is positively correlated with CAC score and could be used as a biomarker of severe CAC in MHD patients.However,there is no obvious correlation between serum COMP levels and the incidence of cardiovascular events.展开更多
The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the ...The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the acid density of catalyst, ethylene conversion showed a linear increase, while the yields of olefins decreased when the acid density of catalyst exceeded 0.14mmolNH3/g owing to a promotion of hydrogen transfer reaction. Through comparing the average distance between acid sites on catalyst with kinetic diameters of olefins, it was found that the dimerization of ethylene was not restrained by the sparse distribution of acid sites, while the hydrogen transfer reaction of C3 and C4 olefins was limited. On these bases, a conclusion is proposed that the dimerization of ethylene proceeded via Eley-Rideal mechanism, while the hydrogen transfer reaction of C3 and C4 olefins followed the Langmuir-Hinshelwood mechanism.展开更多
The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocya...The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuro- protective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal gan- glion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 pmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H202) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H202 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H202-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process.展开更多
Background Cartilage oligomeric matrix protein (COMP) is mainly found in the skeletal system and vascular smooth muscle cells. Recent researches showed that it had a protective function on blood vessels and could al...Background Cartilage oligomeric matrix protein (COMP) is mainly found in the skeletal system and vascular smooth muscle cells. Recent researches showed that it had a protective function on blood vessels and could also inhibit vascular calcification. We investigated the serum COMPs in coronary heart disease (CHD) patients, and the relationship between serum COMP and the calcification of coronary artery. Methods A total of 233 consecutive chest pain patients who first underwent coronary angiography followed by multi-slice computed to- mography (MSCT) within six months were recruited and divided into two groups according to the coronary angiography luminal diameter narrowing percentages: CHD group (diameter narrowing 〉 50%, n = 194) and control group (diameter narrowing 〈 50%, n = 39). The Gen- sini score, Syntax score and coronary artery calcium score (CACs) were calculated. The serum COMP level was determined using ELISA. Results The levels of COMP were significantly higher in the CHD group than in the control group 155.7 (124.5-194.5) ng/mL vs. 128.4 (113.0-159.9) ng/mL, P = 0.019. There were no correlation between COMP, Gensini score, Syntax score, severity of coronary stenosis and the number of coronary artery with stenosis 〉 50%. The serum COMP was correlated with age (r = 0.294, P 〈 0.001), fasting glucose (r = 0.163, P = 0.015), HbAlc (r = 0.194, P = 0.015) and CACs (r = 0.137, P = 0.037). Stepwise linear regression analysis showed that COMP level and age were independent predictors of CACs in the CHD patients (fl = 0.402, t = 2.612, P = 0.015; fl = 0.472, t = 3.077, P = 0.005). Performance of COMP for predicting CHD was shown as area under curve (AUC): 0.632, 95% CI: 0.549-0.715 and upper tertile CACs was AUC: 0.602, 95% CI: 0.5264).678 in receiver operating characteristic (ROC) curve analysis. Conclusion Calcification of coronary artery was an independent predictor of serum COMPs.展开更多
AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by...AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining,terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed.RESULTS: In this study, cytotoxic effect of OPC on SNUC4 cells appeared in a dose-dependent manner. OPC treatment (100 μg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 μg/mL)increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 μg/mL) compared with control.CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4.展开更多
Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic a...Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic aggregate species. The aim of the present study was to investigate the mechanisms of cornel iridoid glycoside(CIG) on tau oligomers and cognitive functions. We injected wortmannin and GF-109203 X(WM/GFX, 200 μmol·L-1 each) into the lateral ventricles to induce tau oligomer and memory impairment in rats. When oral y administered with CIG at 60 and 120 mg·kg-1 per day for 14 d, CIG decreased the escape latency in Morris water maze test. We also found that CIG restored the expression of presynaptic p-synapsin, synaptophysin, and postsynaptic density-95(PSD-95) decreased by WM/GFX in rat cortex. CIG reduced the accumulation of tau oligomers in the brain of WM/GFX rats and in cells transfected with wild type glycogen synthase kinase-3β(wt GSK-3β). In addition, CIG up-regulated the levels of ATG7, ATG12, Beclin-1, and LC3 II in vivo and in vitro, suggesting the restoration of autophagy function. These results suggest that CIG could ameliorate memory deficits and regulate memory-associated synaptic proteins through the clearance of tau oligomers accumulation. Moreover, CIG clears tau oligomers by restoring autophagy function.展开更多
The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite cata...The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.展开更多
AIM: To investigate the expression of nucleotide oligomerization domain 2 (NOD2) in the immortalized human corneal epithelial cell line (THCE), and its role in the innate immune response triggered by inactive Aspergil...AIM: To investigate the expression of nucleotide oligomerization domain 2 (NOD2) in the immortalized human corneal epithelial cell line (THCE), and its role in the innate immune response triggered by inactive Aspergillus fumigatus (Af) conidia. METHODS: The normal THCE cells were investigated as controls. After incubation with inactive Af conidia for 0.5, 2, 4, 6, and 8 hours, THCE cells were harvested, mRNA expression of NOD2 and receptor interacting protein 2 (RIP2) was detected by RT-PCR. Intracellular proteins including NOD2, NF-kappa B and proinflammatory cytokines such as TNF-alpha, IL-8, IL-6 in the cell supernatant were analyzed by ELISA. RESULTS: Our data indicate that NOD2 expressed in the normal THCE cells. After triggered by the inactive Af conidia, the expression of NOD2, RIP2 mRNA and the secretion of NOD2, NF-kappa B, TNF-alpha, IL-8, IL-6 both increased in a time-depended manner, and reached the peak point at 4, 6, 6, 4, 6, 6, 4 hours, respectively. And after pretreated with NOD2 neutralizing antibody, the expression of RIP2, NF-kappa B, TNF-alpha, IL-8 both decreased dramatically at the peak point, while the secretion of IL-6 changed little. CONCLUSION: The results of this study suggest that NOD2 exists and expresses in the THCE cells, and contributes to the innate immune responses triggered by inactive Afconidia by induction of proinflammatory cytokines such as TNF-alpha and IL-8 through the NF-kappa B pathway.展开更多
Nucleotide-binding oligomerization domain 1(NOD1) is an intracellular innate immune sensor for small molecules derived from bacterial cell components. NOD1 activation by its ligands leads to robust production of pro-i...Nucleotide-binding oligomerization domain 1(NOD1) is an intracellular innate immune sensor for small molecules derived from bacterial cell components. NOD1 activation by its ligands leads to robust production of pro-inflammatory cytokines and chemokines by innate immune cells, thereby mediating mucosal host defense systems against microbes. Chronic gastric infection due to Helicobacter pylori(H. pylori) causes various upper gastrointestinal diseases, including atrophic gastritis, peptic ulcers, and gastric cancer. It is now generally accepted that detection of H. pylori by NOD1 expressed in gastric epithelial cells plays an indispensable role in mucosal host defense systems against this organism. Recent studies have revealed the molecular mechanism by which NOD1 activation caused by H. pylori infection is involved in the development of chronic gastritis and gastric cancer. In this review, we have discussed and summarized how sensing of H. pylori by NOD1 mediates the prevention of chronic gastritis and gastric cancer.展开更多
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金the Partnership for Skills in Applied Sciences,Engineering and Technology(PASET)-Regional Scholarship Innovation Fund(RSIF)(World Bank PASET No.IP22-15)supported by the National Research Foundation(NRF)(NRF-2021R1A2C2091787 and NRF-2022M3H4A1A03076280)+1 种基金the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.KS2422-10)the National Research Council of Science and Technology(Grant No.Global-23-007)of Republic of Korea。
文摘The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.
基金Financial support was obtained from the State Key Laboratory of Petroleum Molecular&Process Engineering(24-ZC0607-0099)the Natural Science Foundation of China(21706177 and 22378293).
文摘A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and 0.09Ni/ZSM-5(130).To determine the interaction between the Ni species and acid sites on the surface of the catalyst,the catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-vis spectroscopy.The performance of the catalysts for the catalytic oligomerization of 1-hexene was investigated in detail.The nickel species were found to be uniformly distributed in all the catalysts.It was discovered that the oligomerization activity of the catalyst can be improved using Ni species;however,the contribution of Brønsted acids in oligomerization reactions is greater than that of Ni sites and Lewis acids.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
文摘The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].
基金supported by the National Natural Science Foundation of China (51773134, U19A2095)the Sichuan Science and Technology Program (2019YFH0112)+2 种基金the Fundamental Research Funds for the Central UniversitiesInstitutional Research Fund from Sichuan University (2021SCUNL201)the 111 Project (B20001)。
文摘Preparing both safe and high-performance lithium-ion batteries(LIBs) based on commonly used commercial electrolytes is highly desirable,yet challenging.To overcome the poor compatibility of conventional small-molecular flame-retardants as electrolyte additives for safe LIBs with graphite anodes,in this study,we propose and design a novel low-cost flame-retardant oligomer that achieves an accurate and complete reconciliation of fire safety and electrochemical performance in LIBs.Owing to the integration of phosphonate units and polyethylene glycol(PEG) chains,this oligomer,which is a phosphonatecontaining PEG-based oligomer(PPO),not only endows commercial electrolytes with excellent flame retardancy but also helps stabilize the electrodes and Li-ion migration.Specifically,adding 15 wt% of PPO can reduce 70% of the self-extinguishing time and 54% of total heat release for commercial electrolytes.Moreover,LiFePO_(4)/lithium and graphite/lithium cells as well as LiFePO_(4)/graphite pouch full cells exhibit good long-term cycling stability.
基金This work was financially supported by China Petrochemical Corporation Project(120055).
文摘The active catalysts of the BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization reaction,as well as the distribution of the reaction products,was investigated by molecular simulation.The calculation results show that(BF_(3))_(2)·n-C_(4)H_(9)OH catalyzes the 1-decene oligomerization reaction with higher activity compared to BF_(3)·n-C_(4)H_(9)OH,which is the most catalytically active substance in the BF_(3)/n-C_(4)H_(9)OH catalyst system.The reaction energy barriers and heats of reaction of chain initiation,chain growth,and chain termination in BF_(3)/n-C_(4)H_(9)OH-catalyzed 1-decene oligomerization are calculated to reveal the product distribution.The calculation results show that the contents of the oligomerization reaction products in descending order are trimer,tetramer,pentamer,and dimer.The calculated results were consistent with the experimentally obtained product distribution.
基金Supported by a grant of Ministerio Educacion y Ciencia (BFU 2006-15063)E.C.is participant of the Program "Contratos de apoyo a la Investigacion del Sistema Nacional de Salud". S.V. was supported by "Fondo Investigaciones Sanitarias" and participant of the Program for Stabilization of Investigators of "Direccio d’ Estrategia i Coordinacio del Departament Salut de la Generalitat de Catalunya"
文摘AIM: To examine genetic variation of nucleotide oligomerization domain 1 (NOD/) and NOD2, their respective influences on Crohn's disease phenotype and gene-gene interactions. METHODS: (ND1+32656*1) NOD1 polymorphism and SNPS, SNP12 and SNP13 of NOD2 were analyzed in 97 patients and 50 controls. NOD2 variants were determined by reaction restriction fragment length polymorphism analysis. NOD1 genotyping and NOD2 variant confirmation were performed by specific amplification and sequencing. RESULTS: The distribution of NOD1 polymorphism in patients was different from controls (P = 0.045) and not altered by existence of NOD2 mutations. In this cohort, 30.92% patients and 6% controls carried at least one NOD2 variant (P 〈 0.001) with R702W being the most frequent variant. Presence of at least one NOD2 mutation was inversely associated with colon involvement (9.09% with colon vs 36.4% with ileal or ileocolonic involvement, P = 0.04) and indicative of risk of penetrating disease (52.63% with penetrating vs 25.64% with non-penetrating or stricturing behavior, P = 0.02). L1007finsC and double NOD2 mutation conferred the highest risk for severity of disease (26.3% with penetrating disease vs 3.8% with non-penetrating or stricturing behavior presented L1007finsC, P = 0.01 and 21.0% with penetrating disease vs 2.5% with non-penentrating or stricturing behavior carried double NOD2 mutation, P = 0.007). Exclusion of patients with NOD2 mutations from phenotype/NODl-genotype analysis revealed higher prevalence of *1*1 genotype in groups of younger age at onset and colonic location.CONCLUSION: This study suggests population differences in the inheritance of risk NOD1 polymorphism and NOD2 mutations. Although no interaction between NOD1-NOD2 was noticed, a relationship between disease location and Nod-like receptor molecules was established.
文摘BrФnsted-acidic zeolite and zeotype materials are potential catalysts for the conversion of ethene to higher alkenes. In this study, two materials with AFI structure but different acid strength, H-SAPO-5 and H-SSZ-24, were subject to studies of ethene, cis-2-butene and ethene-butene mixture conversion under conditions where C3-C5 alkene formation is thermodynamically favoured over higher hydrocarbons(673-823 K, 1 atm). Ethene and cis-2-butene partial pressures were varied in the range 9-60 and 0.9-8.1 kPa, respectively, and contact times were varied in the range 3.78-756 and 0.573-76.4 s.μmol H+/cm^3 over H-SAPO-5 and H-SSZ-24, respectively. Less than 1% conversion of ethene and less than 10% conversion of butene was obtained in the range of conditions used for elucidation of rate parameters. The ethene conversion rates were more than an order of magnitude higher over the more acidic H-SSZ-24 than over H-SAPO-5(6.5 vs. 0.3 mmol/mol H+.s at 748 K, Pethene = 33 kP a), with corresponding lower reaction order in ethene(1.5 vs. 2.0 at 673 K) and lower apparent activation energy(52 vs. 80 kJ/mol at 698-823 K). Propene selectivity was substantially higher over H-SSZ-24 than over H-SAPO-5(68% vs. 36% at 0.5% ethene conversion). A similar difference in apparent reaction rates was observed for cis-2-butene conversion over the two catalysts, and for co-feeds of ethene and cis-2-butene. However, the cis-2-butene conversion to C3-C5 alkenes was found to be severely influenced by thermodynamic limitations, impeding a detailed kinetic analysis, and leading predominantly to isobutene formation at the highest temperatures.
文摘Among the inherent drawbacks of conducting polymers are the limited processibility, uneven polydispersity inmolecular weigh and the existence of structure defects, which become the obstacles for many electronic, optical andbiological applications that demand the materials to have well-defined structures and high chemical purity. To solve theseproblems, our research in the last decade or so has focused on the synthesis of electroactive oligomers of well-definedstructures, controllable molecular weighs, narrow or uniform polydispersity. We have developed a general strategy for thesynthesis of such oligomers based on the theory of non-classical or reactivation chain polymerization. The aniline oligomerswith minimum 4 nitrogen atoms and 3 phenylene rings exhibit similar characteristic redox behavior and electroactivity aspolyaniline. Electronic conductivity of the oligomers of 7 or 8 aniline units approaches that of polyaniline. Solubility of theoligomers is much improved over that of conventional polyaniline. Various functional groups can be introduced into theoligomers either by proper selection of starting materials or by post-synthesis modifications via common organic reactions.The functionalized oligomers undergo further polymerizations to afford a variety of new electroactive materials, includingpolyamides, polyimides, polyureas, polyurethanes, polyacrylamides and epoxy polymers. Numerous potential applications,particularly as anticorrosion materials, are discussed for the oligomers and their polymeric derivatives.
文摘The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods. The steady-state spectral measurement shows that the increasing of fluorene-vinylene (FV) group could lead to the red shift of absorption spectra and restrain the excimer formation between oligomers. Quantum chemical calculations exhibit that the energy levels of HOMO, LUMO, and the band gap gradually converge to a constant in accompany with the increasing of FV unit. Meanwhile, the electronic cloud which distributes on the branch arms, also gradually enhances and makes the absorption spectral shape of oligomers become similar to that of branch arms step by step. The time-resolved fluorescence tests exhibits that the lifetime of excimer emission would be almost invariable after the number of FV group in oligomer is ≥2. In nonlinear optical test, the two-photon photoluminescence efficiency and two-photon absorption cross-section will both gradually enhance and be close to an extremum after the number of FV unit is equal to 4. These results will provide a guideline for the design of novel photo-electronic materials.
基金supported by the National Natural Science Foundation of China(81400262)the Backbone Fund of Peking University Third Hospital(Y72497-04)
文摘Background Coronary artery calcification(CAC)is common in end-stage renal disease(ESRD)patients,and the extent of CAC is closely related to cardiovascular outcomes in ESRD patients.Cartilage oligomeric matrix protein(COMP),as a component of the vascular matrix,has been found to be an inhibitor of arterial calcification in basic studies.However,there is no clinical research on the correlation between COMP and CAC in maintenance hemodialysis(MHD)patients.The aim of this study was to explore the relationship between serum COMP levels and CAC and cardiovascular events in MHD patients.Methods Serum COMP levels were compared between 54 MHD patients and 66 healthy people.MHD patients were then divided into three groups according to the tertiles of the concentration of COMP level and were followed up for major adverse cardiac events(MACEs),which were defined as a combined end point of new onset angina pectoris,nonfatal myocardial infarction,heart failure,coronary artery revascularization,hospitalization due to angina pectoris and all-cause deaths.The CAC score was calculated based on computed tomography scans.Results The serum COMP level in MHD patients was significantly higher than that in the general population[984.23(248.43-1902.61)ng/mL vs.219.01(97.26-821.92)ng/mL,P<0.01].Serum COMP levels were positively correlated with CAC(r=0.313,P=0.021)and serum parathyroid hormone in MHD patients(r=0.359,P<0.01).Linear regression suggested that after adjusting for age,fasting blood glucose(Glu)and glycosylated hemoglobin(HbAlc),CAC score was an independent predictor in the final model for COMP level(β=0.424,t=3.130,P<0.01).The receiver operating characteristic(ROC)curve showed that COMP≥994 mg/mL had 68.0%sensitivity and 72.4%specificity for the prediction of severe CAC[area under the curve(AUC):0.674,P=0.030,95%CI:0.526-0.882].After a median follow-up of 16 months(8-24 months),there was no difference in the incidence rate of MACEs between the upper,middle and lower serum COMP groups.Conclusions Our study found that MHD patients have higher levels of circulating COMP than controls.The serum COMP level is positively correlated with CAC score and could be used as a biomarker of severe CAC in MHD patients.However,there is no obvious correlation between serum COMP levels and the incidence of cardiovascular events.
文摘The oligomerization of ethylene in FCC dry gas over HZSM-5 catalyst with different Si/A12 ratios was studied. The effect of acid density of catalyst on the oligomerization of ethylene was discussed. By increasing the acid density of catalyst, ethylene conversion showed a linear increase, while the yields of olefins decreased when the acid density of catalyst exceeded 0.14mmolNH3/g owing to a promotion of hydrogen transfer reaction. Through comparing the average distance between acid sites on catalyst with kinetic diameters of olefins, it was found that the dimerization of ethylene was not restrained by the sparse distribution of acid sites, while the hydrogen transfer reaction of C3 and C4 olefins was limited. On these bases, a conclusion is proposed that the dimerization of ethylene proceeded via Eley-Rideal mechanism, while the hydrogen transfer reaction of C3 and C4 olefins followed the Langmuir-Hinshelwood mechanism.
基金supported by grants from theNational Basic Research Program of China,No.973Program,2011CB707501the Natural Science Foundation of Guangdong Province,China,No.S2012010008874+1 种基金the Natural Science Foundation of Guangzhou,China,No.11BppZXaa2070006,D.X.Lthe National Natural Science Foundation of China,No.81100669
文摘The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuro- protective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal gan- glion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 pmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H202) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H202 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H202-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process.
文摘Background Cartilage oligomeric matrix protein (COMP) is mainly found in the skeletal system and vascular smooth muscle cells. Recent researches showed that it had a protective function on blood vessels and could also inhibit vascular calcification. We investigated the serum COMPs in coronary heart disease (CHD) patients, and the relationship between serum COMP and the calcification of coronary artery. Methods A total of 233 consecutive chest pain patients who first underwent coronary angiography followed by multi-slice computed to- mography (MSCT) within six months were recruited and divided into two groups according to the coronary angiography luminal diameter narrowing percentages: CHD group (diameter narrowing 〉 50%, n = 194) and control group (diameter narrowing 〈 50%, n = 39). The Gen- sini score, Syntax score and coronary artery calcium score (CACs) were calculated. The serum COMP level was determined using ELISA. Results The levels of COMP were significantly higher in the CHD group than in the control group 155.7 (124.5-194.5) ng/mL vs. 128.4 (113.0-159.9) ng/mL, P = 0.019. There were no correlation between COMP, Gensini score, Syntax score, severity of coronary stenosis and the number of coronary artery with stenosis 〉 50%. The serum COMP was correlated with age (r = 0.294, P 〈 0.001), fasting glucose (r = 0.163, P = 0.015), HbAlc (r = 0.194, P = 0.015) and CACs (r = 0.137, P = 0.037). Stepwise linear regression analysis showed that COMP level and age were independent predictors of CACs in the CHD patients (fl = 0.402, t = 2.612, P = 0.015; fl = 0.472, t = 3.077, P = 0.005). Performance of COMP for predicting CHD was shown as area under curve (AUC): 0.632, 95% CI: 0.549-0.715 and upper tertile CACs was AUC: 0.602, 95% CI: 0.5264).678 in receiver operating characteristic (ROC) curve analysis. Conclusion Calcification of coronary artery was an independent predictor of serum COMPs.
文摘AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining,terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed.RESULTS: In this study, cytotoxic effect of OPC on SNUC4 cells appeared in a dose-dependent manner. OPC treatment (100 μg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 μg/mL)increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 μg/mL) compared with control.CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4.
文摘Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic aggregate species. The aim of the present study was to investigate the mechanisms of cornel iridoid glycoside(CIG) on tau oligomers and cognitive functions. We injected wortmannin and GF-109203 X(WM/GFX, 200 μmol·L-1 each) into the lateral ventricles to induce tau oligomer and memory impairment in rats. When oral y administered with CIG at 60 and 120 mg·kg-1 per day for 14 d, CIG decreased the escape latency in Morris water maze test. We also found that CIG restored the expression of presynaptic p-synapsin, synaptophysin, and postsynaptic density-95(PSD-95) decreased by WM/GFX in rat cortex. CIG reduced the accumulation of tau oligomers in the brain of WM/GFX rats and in cells transfected with wild type glycogen synthase kinase-3β(wt GSK-3β). In addition, CIG up-regulated the levels of ATG7, ATG12, Beclin-1, and LC3 II in vivo and in vitro, suggesting the restoration of autophagy function. These results suggest that CIG could ameliorate memory deficits and regulate memory-associated synaptic proteins through the clearance of tau oligomers accumulation. Moreover, CIG clears tau oligomers by restoring autophagy function.
基金financial support from the National Key Technology R&D Program (2012BAE05B01) of China
文摘The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.
基金National Natural Science Foundation of China (No.30672285)Qingdao Municipal Science and Technology Commission,China (No.10-3-3-10-NSH)
文摘AIM: To investigate the expression of nucleotide oligomerization domain 2 (NOD2) in the immortalized human corneal epithelial cell line (THCE), and its role in the innate immune response triggered by inactive Aspergillus fumigatus (Af) conidia. METHODS: The normal THCE cells were investigated as controls. After incubation with inactive Af conidia for 0.5, 2, 4, 6, and 8 hours, THCE cells were harvested, mRNA expression of NOD2 and receptor interacting protein 2 (RIP2) was detected by RT-PCR. Intracellular proteins including NOD2, NF-kappa B and proinflammatory cytokines such as TNF-alpha, IL-8, IL-6 in the cell supernatant were analyzed by ELISA. RESULTS: Our data indicate that NOD2 expressed in the normal THCE cells. After triggered by the inactive Af conidia, the expression of NOD2, RIP2 mRNA and the secretion of NOD2, NF-kappa B, TNF-alpha, IL-8, IL-6 both increased in a time-depended manner, and reached the peak point at 4, 6, 6, 4, 6, 6, 4 hours, respectively. And after pretreated with NOD2 neutralizing antibody, the expression of RIP2, NF-kappa B, TNF-alpha, IL-8 both decreased dramatically at the peak point, while the secretion of IL-6 changed little. CONCLUSION: The results of this study suggest that NOD2 exists and expresses in the THCE cells, and contributes to the innate immune responses triggered by inactive Afconidia by induction of proinflammatory cytokines such as TNF-alpha and IL-8 through the NF-kappa B pathway.
文摘Nucleotide-binding oligomerization domain 1(NOD1) is an intracellular innate immune sensor for small molecules derived from bacterial cell components. NOD1 activation by its ligands leads to robust production of pro-inflammatory cytokines and chemokines by innate immune cells, thereby mediating mucosal host defense systems against microbes. Chronic gastric infection due to Helicobacter pylori(H. pylori) causes various upper gastrointestinal diseases, including atrophic gastritis, peptic ulcers, and gastric cancer. It is now generally accepted that detection of H. pylori by NOD1 expressed in gastric epithelial cells plays an indispensable role in mucosal host defense systems against this organism. Recent studies have revealed the molecular mechanism by which NOD1 activation caused by H. pylori infection is involved in the development of chronic gastritis and gastric cancer. In this review, we have discussed and summarized how sensing of H. pylori by NOD1 mediates the prevention of chronic gastritis and gastric cancer.