A quite new type of chelating resin Carboxymethylated Polyethylenimine-Polymethylenepolyphenylene Isocyanate(CPPI)is used for the preconcentration of Zn from high salt water such as seawater. The preconcentration is c...A quite new type of chelating resin Carboxymethylated Polyethylenimine-Polymethylenepolyphenylene Isocyanate(CPPI)is used for the preconcentration of Zn from high salt water such as seawater. The preconcentration is controlled through the technique of Flow Injection Analysis(FIA).The concentrated sample solution is then directly transferred to an Inductively Coupled Plasma-Atomic Fluorescence Spectrometer(ICP-AFS)for determination.The detection limit of Zn by the technique is about 0.06 ppb.展开更多
The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation bet...The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.展开更多
The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robo...The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.展开更多
The real-time detection of porosity in welding process is an important problem to be solved in intelligent welding manufacturing.A new on-line detection method for porosity of aluminum alloy in robotic arc welding bas...The real-time detection of porosity in welding process is an important problem to be solved in intelligent welding manufacturing.A new on-line detection method for porosity of aluminum alloy in robotic arc welding based on arc spectrum is proposed in this paper.First,k-shape and the improved k-means were used for the initial feature selection of the preprocessed arc spectrum to reduce the data dimension.Second,the secondary feature selection was carried out based on the importance of features to further reduce feature redundancy.Then,the optimal sample label library was established by combining the final characteristic parameters and the X-ray pictures of welds.Finally,an on-line detection method of porosity in gas tungsten arc welding of aluminum alloy based on light gradient boosting machine(LightGBM)was proposed.Compared with extreme gradient boosting(XGBoost)and categorical boosting(CatBoost),this method can achieve better detection performance.The new method proposed in this paper can be used to detect other welding defects,which is helpful to the development of intelligent welding technology.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi...Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.展开更多
In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector machines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMP...In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector machines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to develop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged window technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production.展开更多
In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma- chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based D...In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma- chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to de- velop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged win- dow technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production.展开更多
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio...The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.展开更多
On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on ...On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach.展开更多
To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of tradition...To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering( EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.展开更多
Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-...Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.展开更多
Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper...Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.展开更多
Based on radial basis function (RBF) neural networks, the healthy working model of each sub system of robot in FMS is established. A new approach to fault on line detection and diagnosis according to neural networks...Based on radial basis function (RBF) neural networks, the healthy working model of each sub system of robot in FMS is established. A new approach to fault on line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection...To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De...The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy.展开更多
文摘A quite new type of chelating resin Carboxymethylated Polyethylenimine-Polymethylenepolyphenylene Isocyanate(CPPI)is used for the preconcentration of Zn from high salt water such as seawater. The preconcentration is controlled through the technique of Flow Injection Analysis(FIA).The concentrated sample solution is then directly transferred to an Inductively Coupled Plasma-Atomic Fluorescence Spectrometer(ICP-AFS)for determination.The detection limit of Zn by the technique is about 0.06 ppb.
文摘The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.
基金Supported by the National High technology Research and Development Program of China (No.2002 AA442110)
文摘The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.
基金the National Natural Science Foundation of China(Nos.61873164 and 51575349)。
文摘The real-time detection of porosity in welding process is an important problem to be solved in intelligent welding manufacturing.A new on-line detection method for porosity of aluminum alloy in robotic arc welding based on arc spectrum is proposed in this paper.First,k-shape and the improved k-means were used for the initial feature selection of the preprocessed arc spectrum to reduce the data dimension.Second,the secondary feature selection was carried out based on the importance of features to further reduce feature redundancy.Then,the optimal sample label library was established by combining the final characteristic parameters and the X-ray pictures of welds.Finally,an on-line detection method of porosity in gas tungsten arc welding of aluminum alloy based on light gradient boosting machine(LightGBM)was proposed.Compared with extreme gradient boosting(XGBoost)and categorical boosting(CatBoost),this method can achieve better detection performance.The new method proposed in this paper can be used to detect other welding defects,which is helpful to the development of intelligent welding technology.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金the“Intelligent Recognition Industry Service Center”as part of the Featured Areas Research Center Program under the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,and the National Science and Technology Council,Taiwan,under grants 113-2221-E-224-041 and 113-2622-E-224-002.Additionally,partial support was provided by Isuzu Optics Corporation.
文摘Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.
基金Supported by the National Natural Science Foundation of China (No.60574038) and the Open Project Program of the State Key Laboratory of Bioreactor Engineering/ECUST.
文摘In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector machines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to develop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged window technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production.
基金the National Natural Science Foundation of China (No.60574038) the Open Project Program of the State KeyLaboratory of Bioreactor Engineering/ECUST.
文摘In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma- chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to de- velop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged win- dow technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production.
基金Project(2011AA040603) supported by the National High Technology Ressarch & Development Program of ChinaProject(201202226) supported by the Natural Science Foundation of Liaoning Province, China
文摘The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.
文摘On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach.
文摘To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering( EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.
文摘Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.
基金Our research has been supported in part by National Natural Science Foundation of China under Grants 61673261 and 61703273.We gratefully acknowledge the support from some companies.
文摘Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.
文摘Based on radial basis function (RBF) neural networks, the healthy working model of each sub system of robot in FMS is established. A new approach to fault on line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)。
文摘To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
基金supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)。
文摘The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy.