The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra...The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.展开更多
In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak to...In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.展开更多
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the bo...In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the boundedness of vector-valued multilinear frac- tional integral and the weak weighted LlogL estimates for vector-valued multilinear fractional integral are also obtained.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for cl...In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for classical fractional integral Iα. The method given in the note is useful for more general multilinear integral operators.展开更多
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates o...Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.展开更多
Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedn...Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedness properties of commutators [b, L^-α/2] on weighted Morrey spaces L^p,k(w) when the symbol b belongs to BMO(Rn) or the homogeneous Lipschitz space.展开更多
The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) i...The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.展开更多
In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish th...In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.展开更多
For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and ...For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).展开更多
Let μ be a Borel measure on R^d which may be non doubling. The only condition that μ must satisfy is μ(Q) ≤ col(Q)^n for any cube Q belong to R^d with sides parallel to the coordinate axes and for some fixed ...Let μ be a Borel measure on R^d which may be non doubling. The only condition that μ must satisfy is μ(Q) ≤ col(Q)^n for any cube Q belong to R^d with sides parallel to the coordinate axes and for some fixed n with 0 〈 n ≤ d. The purpose of this paper is to obtain a boundedness property of fractional integrals in Hardy spaces H^1(μ).展开更多
In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
In this paper, we will establish the boundedness of the commutator generated by fractional integral operator and RBMO(μ) function on generalized Morrey space in the non-homogeneous space.
In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.
In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boun...In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.展开更多
文摘The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.
文摘In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Supported by the National Natural Science Foundation of China(11271330)
文摘In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
基金Supported by the National Natural Science Foundation of China(11271330,11226104,11226108)the Jiangxi Natural Science Foundation of China(20114BAB211007)the Science Foundation of Jiangxi Education Department(GJJ13703)
文摘In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the boundedness of vector-valued multilinear frac- tional integral and the weak weighted LlogL estimates for vector-valued multilinear fractional integral are also obtained.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
基金Supported by the National Natural Sciences Foundation of China (10771110)the Natural Science Founda- tion of Ningbo City (2006A610090)
文摘In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for classical fractional integral Iα. The method given in the note is useful for more general multilinear integral operators.
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
文摘Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.
文摘Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedness properties of commutators [b, L^-α/2] on weighted Morrey spaces L^p,k(w) when the symbol b belongs to BMO(Rn) or the homogeneous Lipschitz space.
基金Supported by the973Project( G1 9990 75 1 0 5 ) and the National Natural Science Foundation of China( 1 0 2 71 0 1 6)
文摘The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.
基金supported by NSFC (No. 11201003)University NSR Project of Anhui Province (No. KJ2014A087)
文摘In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
基金Supported by the Anhui Polytechnic University Foundation for Recruiting Talent(2011YQQ004)Supported by the Provincial Natural Science Research Project of Anhui Colleges(KJ2011A032)+1 种基金Supported by the Young Teachers Program of Anhui Province(2006jql042)Supported by the Grant for Younth of Anhui Polytechnic University (2010YQ047)
文摘In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.
基金the NNSF of China under Grant#10771110NSF of Ningbo City under Grant#2006A610090
文摘For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).
文摘Let μ be a Borel measure on R^d which may be non doubling. The only condition that μ must satisfy is μ(Q) ≤ col(Q)^n for any cube Q belong to R^d with sides parallel to the coordinate axes and for some fixed n with 0 〈 n ≤ d. The purpose of this paper is to obtain a boundedness property of fractional integrals in Hardy spaces H^1(μ).
基金Supported by the NSF of Zhejiang Province (Y6090681)the Education Dept.of Zhejiang Province(Y201120509)
文摘In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
基金Supported by the NSF of Education Committee of Anhui Province (KJ2011A138)
文摘In this paper, we will establish the boundedness of the commutator generated by fractional integral operator and RBMO(μ) function on generalized Morrey space in the non-homogeneous space.
文摘In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.
文摘In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.