The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical...The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., A (the normalized characteristic slip distance) and β-α (the difference in two normalized parameters of friction laws), control the solutions. From given values of △, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when △〉(β-α), yet not when △ 〈(β-α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.展开更多
基金supported by Academia Sinica (Taipei) and Science Council (Grant NSC96-2116-M-001-012-MY3).
文摘The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., A (the normalized characteristic slip distance) and β-α (the difference in two normalized parameters of friction laws), control the solutions. From given values of △, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when △〉(β-α), yet not when △ 〈(β-α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.