For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies hav...Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.展开更多
Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized co...Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.展开更多
Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the inte...Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.展开更多
Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navie...Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navier-Stokes equations with the Hanjalic-Launder (H-L) modification to the k-ε turbulence model without the free surface “rigid lid” approximation with an efficient finite-volume procedure. The model can also analyze flows with separation. The model was used to analyze the relative importance of various factors and was compared with laboratory measurements. The H-L modification produced much better simulations of the separation zone size with 20% better accuracy than the standard k-ε model. The H-L modification was then used to study the characteristic of junction flows and the separation zones with different discharge ratios. The simulational results show that separation zone size decreases as the discharge ratio of the upstream main channel to the downstream channel increases.展开更多
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
基金the National Natural Science Foundation of China(Grant No.51679020)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202100731).
文摘Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.
文摘Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.
基金Project supported by the National Natural Science Foundation of China(No.62025203)。
文摘Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.
文摘Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navier-Stokes equations with the Hanjalic-Launder (H-L) modification to the k-ε turbulence model without the free surface “rigid lid” approximation with an efficient finite-volume procedure. The model can also analyze flows with separation. The model was used to analyze the relative importance of various factors and was compared with laboratory measurements. The H-L modification produced much better simulations of the separation zone size with 20% better accuracy than the standard k-ε model. The H-L modification was then used to study the characteristic of junction flows and the separation zones with different discharge ratios. The simulational results show that separation zone size decreases as the discharge ratio of the upstream main channel to the downstream channel increases.