期刊文献+
共找到32,138篇文章
< 1 2 250 >
每页显示 20 50 100
GPS monitoring and analysis of ground movement and deformation induced by transition from open-pit to underground mining 被引量:3
1
作者 Fengshan Ma Haijun Zhao +4 位作者 Yamin Zhang Jie Guo Aihua Wei Zhiquan Wu Yonglong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期82-87,共6页
To trace the potential hazards of open-pit slope in Longshou mine,global positioning system(GPS) is applied to monitoring ground movement and deformation induced by transition from open-pit to underground mining.Thr... To trace the potential hazards of open-pit slope in Longshou mine,global positioning system(GPS) is applied to monitoring ground movement and deformation induced by transition from open-pit to underground mining.Through long-term monitoring from 2003 to 2008,huge amounts of data were acquired.Monitoring results show that large-scale ground movement and deformation have occurred in mining area,and the movement area is ellipse-shaped.The displacement boundary of settlement trough is 2.0 km long along the exploratory line,and 1.5 km long along the strike of ore body.GPS monitoring results basically agree with the practical deformation state of open-pit slope.It is indicated that the long-term GPS monitoring is an effective way to understand the mechanism of ground movement and deformation in mine area. 更多 展开更多
关键词 open-pit ground movement long-term GPS monitoring deformation analysis
下载PDF
Application of open-pit and underground mining technology for residual coal of end slopes 被引量:9
2
作者 CHE, Zhaoxue YANG, Hong 《Mining Science and Technology》 EI CAS 2010年第2期266-270,共5页
Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech... Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized. 展开更多
关键词 integrated open-pit and underground mining end-slope resource recovery economic benefit surface coal mine
下载PDF
Study on the Law of the Movement and Damage to Slope with the Combination of Underground Mining and Open-Pit Mining 被引量:1
3
作者 Gaofeng Ren Xingkui Fang 《Engineering(科研)》 2010年第3期201-204,共4页
Under circumstances in which both underground mining and open-pit mining are employed, the mining effects of two approaches will be superposed and the mining slope will receive several induced stress fields, which mak... Under circumstances in which both underground mining and open-pit mining are employed, the mining effects of two approaches will be superposed and the mining slope will receive several induced stress fields, which makes the sliding mechanism and deformation law of slope rock mass more complicated. This paper, targeting at the east slope of Antaibao Mine with the joint employment of underground mining and open-pit mining, aims to study the moving law of the slope rock mass and the damage mechanism to the overburden of the goaf by numerical simulation. It is supposed that models of possible damage to the slope could be explored for guidance to safety-production of the mine. 展开更多
关键词 COMBINATION of underground and open-pit MINING MINING DAMAGE Deformation Mechanism Numerical Simulation
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
4
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves underground tunnels Vulnerability functions Brittle damage FLAC3D Numerical modeling
下载PDF
Sealing capacity evaluation of underground gas storage under intricate geological conditions 被引量:1
5
作者 Guangquan Zhang Sinan Zhu +4 位作者 Daqian Zeng Yuewei Jia Lidong Mi Xiaosong Yang Junfa Zhang 《Energy Geoscience》 EI 2024年第3期234-243,共10页
Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat... Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations. 展开更多
关键词 underground gas storage Sealing capacity GEOMECHANICS Maximum operational pressure
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
6
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
Preliminary research and scheme design of deep underground in situ geo-information detection experiment for Geology in Time
7
作者 Heping Xie Ru Zhang +13 位作者 Zetian Zhang Yinshuang Ai Jianhui Deng Yun Chen Yong Zhou Mingchuan Li Liqiang Liu Mingzhong Gao Zeqian Yang Weiqiang Ling Heng Gao Qijun Hao Kun Xiao Chendi Lou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L... The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering. 展开更多
关键词 Deep underground Geology in Time China Jinping underground Laboratory In situ detection
下载PDF
Deep sea mineral resources and underground space as well as infrastructure for sustainable and liveable cities
8
作者 Jianguo Wang Heping Xie +1 位作者 Chunfai Leung Xiaozhao Li 《Deep Underground Science and Engineering》 2024年第2期129-130,共2页
This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
关键词 underground SUSTAINABLE DEEP
下载PDF
Global stability coefficient of large underground caverns under static loading and earthquake wave condition
9
作者 CHEN Peng-fei JIANG Quan +3 位作者 LIU Jian LI Shao-jun CHEN Tao HE Ben-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2826-2843,共18页
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ... Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group. 展开更多
关键词 underground caverns global stability coefficient static-dynamic overload local instability
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
10
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 underground coal mining Roof fall Fuzzy logic Genetic algorithm
下载PDF
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs:A Review
11
作者 Lingping Zeng Regina Sander +1 位作者 Yongqiang Chen Quan Xie 《Engineering》 SCIE EI CAS CSCD 2024年第9期211-225,共15页
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large... Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies. 展开更多
关键词 underground hydrogen storage Storage performance Hydrogen deliverability Hydrogen trapping Risk assessment Techno-economic analysis
下载PDF
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
12
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 Artificial ground freezing underground mining Sustainable mining THERMOSYPHON Air insulation Cold regions
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
13
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
14
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
Bibliometric analysis of research challenges and trends in urban underground space
15
作者 You Zhang Liang Zheng +3 位作者 Lingling He Yuyong Jiao Hanfa Peng Ranjith PGamage 《Deep Underground Science and Engineering》 2024年第2期207-215,共9页
The utilization and development of urban underground space play a crucial role in optimizing the layout of civic architecture and enhancing the urban ecological environment,which contributes toward increasing the over... The utilization and development of urban underground space play a crucial role in optimizing the layout of civic architecture and enhancing the urban ecological environment,which contributes toward increasing the overall carrying capacity and promoting sustainable development in megacities.To delve into the research progress of urban underground space,knowledge maps were created using the information visualization software VOSviewer.The literature was systematically extracted from three prominent databases,namely,Web of Science,Scopus,and China National Knowledge Infrastructure.According to the bibliometric analysis of the co-citation and core words co-occurrence,the trends and challenges of research on urban underground space were identified.As highlighted by the results obtained,it still remains highly challenging to achieve interdisciplinary collaboration in urban underground space research;the research trends of urban underground space consist of collaborative planning and whole life cycle sustainable development,multisource geological data informatization and resource evaluation,infrastructure design optimization,and intelligent construction.The knowledge map,drawn using bibliometric methods,offers a quantitative analysis of literature retrieval across various levels.It is recognized as an essential tool for exploring and identifying challenges and trends in urban underground space. 展开更多
关键词 bibliometric analysis knowledge groups urban underground space VOSviewer
下载PDF
Key aspects of underground hydrogen storage in depleted hydrocarbon reservoirs and saline aquifers:A review and understanding
16
作者 Rawaa A.Sadkhan Watheq J.Al-Mudhafar 《Energy Geoscience》 EI 2024年第4期55-74,共20页
Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their cap... Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system. 展开更多
关键词 underground hydrogen storage Renewable energy Depleted reservoirs Saline aquifers Fundamental review
下载PDF
Mechanism,prevention,and control of mining-induced dynamic disasters in underground metal mines in China:Challenges and solutions
17
作者 LI Peng CAI Mei-feng +3 位作者 MIAO Sheng-jun REN Fen-hua GORJIAN Mostafa PENG Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2549-2606,共58页
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ... Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention. 展开更多
关键词 underground metal mines dynamic disasters MECHANISM monitoring and early warning prevention and control
下载PDF
SDH-FCOS:An Efficient Neural Network for Defect Detection in Urban Underground Pipelines
18
作者 Bin Zhou Bo Li +2 位作者 Wenfei Lan Congwen Tian Wei Yao 《Computers, Materials & Continua》 SCIE EI 2024年第1期633-652,共20页
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect... Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model. 展开更多
关键词 Urban underground pipelines defect detection SDH-FCOS feature fusion SPPF dual detection heads
下载PDF
Solution to the Horizontal Crossing Problem of Transportation System at Key Points in Open-Pit Mines
19
作者 Tao DONG Ling LIU 《Asian Agricultural Research》 2024年第7期36-38,47,共4页
In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production... In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency. 展开更多
关键词 open-pit mines Cross-transport Underpass bridge Overpass steel trestle Production efficiency
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
20
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部