期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7
1
作者 Chao Dong Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第12期3015-3036,共22页
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model... To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements. 展开更多
关键词 Object detection optical remote sensing images YOLOv7-tiny real-time detection
下载PDF
An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images 被引量:1
2
作者 Sihang Zhang Zhenfeng Shao +2 位作者 Xiao Huang Linze Bai Jiaming Wang 《Geo-Spatial Information Science》 SCIE EI CSCD 2021年第4期654-665,共12页
Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either ... Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers,leading to increased computational demand and reduced detection speeds.In this study,we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images.For the internal opti-mization,we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks.The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer.For the external optimiza-tion,we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes.Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods. 展开更多
关键词 Arbitrary orientated object detection optical remote sensing image single-shot deep learning
原文传递
Mapping the bathymetry of shallow coastal water using singleframe fine-resolution optical remote sensing imagery 被引量:7
3
作者 LI Jiran ZHANG Huaguo +2 位作者 HOU Pengfei FU Bin ZHENG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期60-66,共7页
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep... This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water. 展开更多
关键词 BATHYMETRY optical remote sensing image NEARSHORE QUICKBIRD
下载PDF
PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform 被引量:12
4
作者 LIU Meijie DAI Yongshou +3 位作者 ZHANG Jie ZHANG Xi MENG Junmin XIE Qinchuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期59-67,共9页
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b... Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification. 展开更多
关键词 sea ice optical remote sensing image SAR remote sensing image HIS transform wavelet transform PCA method
下载PDF
Unsupervised GRNN flood mapping approach combined with uncertainty analysis using bi-temporal Sentinel-2 MSI imageries
5
作者 Qi Zhang Penglin Zhang Xudong Hua 《International Journal of Digital Earth》 SCIE 2021年第11期1561-1581,共21页
Floods occur frequently worldwide.The timely,accurate mapping of the flooded areas is an important task.Therefore,an unsupervised approach is proposed for automated flooded area mapping from bitemporal Sentinel-2 mult... Floods occur frequently worldwide.The timely,accurate mapping of the flooded areas is an important task.Therefore,an unsupervised approach is proposed for automated flooded area mapping from bitemporal Sentinel-2 multispectral images in this paper.First,spatial–spectral features of the images before and after the flood are extracted to construct the change magnitude image(CMI).Then,the certain flood pixels and non-flood pixels are obtained by performing uncertainty analysis on the CMI,which are considered reliable classification samples.Next,Generalized Regression Neural Network(GRNN)is used as the core classifier to generate the initial flood map.Finally,an easy-toimplement two-stage post-processing is proposed to reduce the mapping error of the initial flood map,and generate the final flood map.Different from other methods based on machine learning,GRNN is used as the classifier,but the proposed approach is automated and unsupervised because it uses samples automatically generated in uncertainty analysis for model training.Results of comparative experiments in the three sub-regions of the Poyang Lake Basin demonstrate the effectiveness and superiority of the proposed approach.Moreover,its superiority in dealing with uncertain pixels is further proven by comparing the classification accuracy of different methods on uncertain pixels. 展开更多
关键词 Unsupervised flood mapping optical remote sensing image spatial–spectral feature extraction uncertainty analysis GRNN Sentinel-2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部