Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ...Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.展开更多
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structu...Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers.展开更多
Clustering is a group of unsupervised statistical techniques commonly used in many disciplines. Considering their applications to fish abundance data, many technical details need to be considered to ensure reasonable ...Clustering is a group of unsupervised statistical techniques commonly used in many disciplines. Considering their applications to fish abundance data, many technical details need to be considered to ensure reasonable interpretation. However, the reliability and stability of the clustering methods have rarely been studied in the contexts of fisheries. This study presents an intensive evaluation of three common clustering methods, including hierarchical clustering(HC), K-means(KM), and expectation-maximization(EM) methods, based on fish community surveys in the coastal waters of Shandong, China. We evaluated the performances of these three methods considering different numbers of clusters, data size, and data transformation approaches, focusing on the consistency validation using the index of average proportion of non-overlap(APN). The results indicate that the three methods tend to be inconsistent in the optimal number of clusters. EM showed relatively better performances to avoid unbalanced classification, whereas HC and KM provided more stable clustering results. Data transformation including scaling, square-root, and log-transformation had substantial influences on the clustering results, especially for KM. Moreover, transformation also influenced clustering stability, wherein scaling tended to provide a stable solution at the same number of clusters. The APN values indicated improved stability with increasing data size, and the effect leveled off over 70 samples in general and most quickly in EM. We conclude that the best clustering method can be chosen depending on the aim of the study and the number of clusters. In general, KM is relatively robust in our tests. We also provide recommendations for future application of clustering analyses. This study is helpful to ensure the credibility of the application and interpretation of clustering methods.展开更多
We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation....We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation. Two methods are also proposed for automatic clustering: The first one is to determine the optimal number of clusters and the second one is the fuzzy competitively clustering method based on competitively learning techniques. Essential foreground images obtained from any of the color clusters are combined into foreground images. Further performance analysis reveals the advantages of the proposed methods.展开更多
The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in curr...The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in current papers, is reasonable in some sense. The above conclusion is tested and analyzed by some typical examples in the literature, which demonstrates the validity of the new method.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB3304400)the National Natural Science Foundation of China(Nos.6230311,62303111,62076060,61932007,and 62176083)the Key Research and Development Program of Jiangsu Province of China(No.BE2022157).
文摘Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.
基金Supported by the National Key Research and Development Program of China(No.2016YFB0201305)National Science and Technology Major Project(No.2013ZX0102-8001-001-001)National Natural Science Foundation of China(No.91430218,31327901,61472395,61272134,61432018)
文摘Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers.
基金provided by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2018SDKJ0501-2)。
文摘Clustering is a group of unsupervised statistical techniques commonly used in many disciplines. Considering their applications to fish abundance data, many technical details need to be considered to ensure reasonable interpretation. However, the reliability and stability of the clustering methods have rarely been studied in the contexts of fisheries. This study presents an intensive evaluation of three common clustering methods, including hierarchical clustering(HC), K-means(KM), and expectation-maximization(EM) methods, based on fish community surveys in the coastal waters of Shandong, China. We evaluated the performances of these three methods considering different numbers of clusters, data size, and data transformation approaches, focusing on the consistency validation using the index of average proportion of non-overlap(APN). The results indicate that the three methods tend to be inconsistent in the optimal number of clusters. EM showed relatively better performances to avoid unbalanced classification, whereas HC and KM provided more stable clustering results. Data transformation including scaling, square-root, and log-transformation had substantial influences on the clustering results, especially for KM. Moreover, transformation also influenced clustering stability, wherein scaling tended to provide a stable solution at the same number of clusters. The APN values indicated improved stability with increasing data size, and the effect leveled off over 70 samples in general and most quickly in EM. We conclude that the best clustering method can be chosen depending on the aim of the study and the number of clusters. In general, KM is relatively robust in our tests. We also provide recommendations for future application of clustering analyses. This study is helpful to ensure the credibility of the application and interpretation of clustering methods.
文摘We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation. Two methods are also proposed for automatic clustering: The first one is to determine the optimal number of clusters and the second one is the fuzzy competitively clustering method based on competitively learning techniques. Essential foreground images obtained from any of the color clusters are combined into foreground images. Further performance analysis reveals the advantages of the proposed methods.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 69872003 and 40035010)
文摘The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in current papers, is reasonable in some sense. The above conclusion is tested and analyzed by some typical examples in the literature, which demonstrates the validity of the new method.