It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods...It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods for optimization based on connectivity of the network. The calculation structure of connectivity of complex network is analyzed in the paper. The coefficient matrixes of Taylor second order expansion of the system connectivity is generated based on the calculation structure of connectivity of complex network. An optimal schedule is achieved based on genetic algorithms (GA). Fitness of seeds is calculated using the Taylor expansion function of system connectivity. Precise connectivity of the optimal schedule and the Taylor expansion function of system connectivity can be achieved by the approved Minty method or the recursive decomposition algorithm. When error between approximate connectivity and the precise value exceeds the assigned value, the optimization process is continued using GA, and the Taylor function of system connectivity needs to be renewed. The optimization process is called iterative GA. Iterative GA can be used in the large network for optimal reliability attribution. One temporary optimal result will be generated every time in the iteration process. These temporary optimal results approach the real optimal results. They can be regarded as a group of approximate optimal results useful in the real project.展开更多
A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, ...A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, and the objective function accounts for both the change of generation and consumption of the byproduct gases and the demand of low (or middle) pressure steam and electricity for each period to maximize the benefit of products cost and minimize the consumption of energy. The results indicate that the optimal distribution scheme of byproduct gases, middle pressure steam, low pressure steam and electricity is achieved and case study shows that 6% of operation cost is reduced by using the proposed model comparing with the previous model.展开更多
For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression...For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression is derived to allow the optimal dynamic load distribution of the combined system can be made.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which ...The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.展开更多
This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation...This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.展开更多
The goal of web service composition is to choose an optimal scheme according to Quantity of Service (QoS) which selects instances in a distributed network. The networks are clustered with some web services such as o...The goal of web service composition is to choose an optimal scheme according to Quantity of Service (QoS) which selects instances in a distributed network. The networks are clustered with some web services such as ontologies, algorithms and rule engines with similar function and interfaces. In this scheme, web services acted as candidate service construct a distributed model which can't obtain the global services' information. The model is utilized to choose instances according to local QoS information in the progress of service composition. Some QoS matrixes are used to record and compare the instance paths and then choose a better one. Simulation result has proven that our ~pproach has a tradeoff between efficiency and ~quality.展开更多
In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum c...In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum cost flow problem and an optimal power flow problem with generation and storage at the nodes to demonstrate our decision variable reduction method.The main advantage of the proposed technique is that it retains the natural sparse/decomposable structure of network flow problems. As such, the reformulated problems are still amenable to distributed solutions. We demonstrate this by proposing a distributed alternating direction method of multipliers(ADMM)solution for a minimum cost flow problem. We also show that the communication cost of the distributed ADMM algorithm for our proposed cycle-based formulation of the minimum cost flow problem is lower than that of a distributed ADMM algorithm for the original arc-based formulation.展开更多
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m...Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions a...A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter (d) and average hop distance (a) for this class of networks are [square-root 3N -2] less-than-or-equal-to d less-than-or-equal-to [square-root 3N+1] and (5N/9(N-1)) (square-root 3N-1.8) < a < (5N/9 (N-1)). (square-root 3N - 0.23), respectively (N is the number of nodes in the network. (3 less-than-or-equal-to N less-than-or-equal-to 10(4)). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed. The correctness of the algorithm has been also verified by simulating.展开更多
As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this...As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.展开更多
The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblem...The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.展开更多
This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and clas...This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and classification accuracy because of their irrelevance,redundancy,or less information;this pre-processing process is often known as feature selection.This technique is based on adopting a new optimization algorithm known as generalized normal distribution optimization(GNDO)supported by the conversion of the normal distribution to a binary one using the arctangent transfer function to convert the continuous values into binary values.Further,a novel restarting strategy(RS)is proposed to preserve the diversity among the solutions within the population by identifying the solutions that exceed a specific distance from the best-so-far and replace them with the others created using an effective updating scheme.This strategy is integrated with GNDO to propose another binary variant having a high ability to preserve the diversity of the solutions for avoiding becoming stuck in local minima and accelerating convergence,namely improved GNDO(IGNDO).The proposed GNDO and IGNDO algorithms are extensively compared with seven state-of-the-art algorithms to verify their performance on thirteen medical instances taken from the UCI repository.IGNDO is shown to be superior in terms of fitness value and classification accuracy and competitive with the others in terms of the selected features.Since the principal goal in solving the FS problem is to find the appropriate subset of features that maximize classification accuracy,IGNDO is considered the best.展开更多
The cap-and-offset regulation is a practical scheme to lessen carbon emissions.The retailer selling fresh products can adopt sustainable technologies to lessen greenhouse gas emissions.We aim to analyze the optimal jo...The cap-and-offset regulation is a practical scheme to lessen carbon emissions.The retailer selling fresh products can adopt sustainable technologies to lessen greenhouse gas emissions.We aim to analyze the optimal joint strategies on order quantity and sustainable technology investment when the retailer faces stochastic market demand and can only acquire the mean and variance of distribution information.We construct a distributionally robust optimization model and use the Karush-Kuhn-Tucker(KKT)conditions to solve the analytic formula of optimal solutions.By comparing the models with and without investing in sustainable technologies,we examine the effect of sustainable technologies on the operational management decisions of the retailer.Finally,some computational examples are applied to analyze the impact of critical factors on operational strategies,and some managerial insights are given based on the analysis results.展开更多
As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the econom...As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids.This paper proposes an optimization scheme based on the distributionally robust optimization(DRO)model for a microgrid considering solar-wind correlation.Firstly,scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function;then the generated scenario results are reduced by K-means clustering;finally,the probability confidence interval of scenario distribution is constrained by 1-norm and∞-norm.The model is solved by a column-and-constraint generation algorithm.Experimental studies are conducted on a microgrid system in Jiangsu,China and the obtained scheduling solution turned out to be superior under wind and solar power uncertainties,which verifies the effectiveness of the proposed DRO model.展开更多
基金supported by the Shanghai Municipal Education Commission (No. 05AZ74)the Shanghai Science and Technology Committee (No. 04JC14035)
文摘It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods for optimization based on connectivity of the network. The calculation structure of connectivity of complex network is analyzed in the paper. The coefficient matrixes of Taylor second order expansion of the system connectivity is generated based on the calculation structure of connectivity of complex network. An optimal schedule is achieved based on genetic algorithms (GA). Fitness of seeds is calculated using the Taylor expansion function of system connectivity. Precise connectivity of the optimal schedule and the Taylor expansion function of system connectivity can be achieved by the approved Minty method or the recursive decomposition algorithm. When error between approximate connectivity and the precise value exceeds the assigned value, the optimization process is continued using GA, and the Taylor function of system connectivity needs to be renewed. The optimization process is called iterative GA. Iterative GA can be used in the large network for optimal reliability attribution. One temporary optimal result will be generated every time in the iteration process. These temporary optimal results approach the real optimal results. They can be regarded as a group of approximate optimal results useful in the real project.
基金Item Sponsored by Fundamental Research Funds for Central University of China(N090302010)National High-Tech Researchand Development Program of China(2008AA042901)National Key Science and Technology Support Plan of Ministry of Science and Technology of China(2006BAE03A00)
文摘A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, and the objective function accounts for both the change of generation and consumption of the byproduct gases and the demand of low (or middle) pressure steam and electricity for each period to maximize the benefit of products cost and minimize the consumption of energy. The results indicate that the optimal distribution scheme of byproduct gases, middle pressure steam, low pressure steam and electricity is achieved and case study shows that 6% of operation cost is reduced by using the proposed model comparing with the previous model.
文摘For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression is derived to allow the optimal dynamic load distribution of the combined system can be made.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.
文摘The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.
基金supported by the U.S.Office of Naval Research(N00014-21-1-2175)。
文摘This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金supported in part by the National Natural Science Foundation of China(NSFC)(61773260)the Ministry of Science and Technology (2018YFB130590)。
文摘This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.
基金National Natural Science Foundation of China,Major National Science and Technology Projects of New Generation Broadband Wireless Mobile Communication Network,the National High Technology Research and Development Program of China (863 Program)
文摘The goal of web service composition is to choose an optimal scheme according to Quantity of Service (QoS) which selects instances in a distributed network. The networks are clustered with some web services such as ontologies, algorithms and rule engines with similar function and interfaces. In this scheme, web services acted as candidate service construct a distributed model which can't obtain the global services' information. The model is utilized to choose instances according to local QoS information in the progress of service composition. Some QoS matrixes are used to record and compare the instance paths and then choose a better one. Simulation result has proven that our ~pproach has a tradeoff between efficiency and ~quality.
基金supported by National Science Foundation award ECCS-1653838
文摘In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum cost flow problem and an optimal power flow problem with generation and storage at the nodes to demonstrate our decision variable reduction method.The main advantage of the proposed technique is that it retains the natural sparse/decomposable structure of network flow problems. As such, the reformulated problems are still amenable to distributed solutions. We demonstrate this by proposing a distributed alternating direction method of multipliers(ADMM)solution for a minimum cost flow problem. We also show that the communication cost of the distributed ADMM algorithm for our proposed cycle-based formulation of the minimum cost flow problem is lower than that of a distributed ADMM algorithm for the original arc-based formulation.
基金supported in part by the National Natural Science Foundation of China under grants 61971080,61901367in part by the Natural Science Foundation of Shaanxi Province under grant 2020JQ-844in part by the open-end fund of the Engineering Research Center of Intelligent Air-ground Integrated Vehicle and Traffic Control(ZNKD2021-001)。
文摘Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter (d) and average hop distance (a) for this class of networks are [square-root 3N -2] less-than-or-equal-to d less-than-or-equal-to [square-root 3N+1] and (5N/9(N-1)) (square-root 3N-1.8) < a < (5N/9 (N-1)). (square-root 3N - 0.23), respectively (N is the number of nodes in the network. (3 less-than-or-equal-to N less-than-or-equal-to 10(4)). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed. The correctness of the algorithm has been also verified by simulating.
基金supported in part by the Joint Fund of Science and Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021-KF-22-08in part by the Basic Research Program of Science and Technology of Shenzhen,China under Grant JCYJ20190809161805508in part by the National Natural Science Foundation of China under Grant 62271423 and Grant 41976178.
文摘As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(No.50595413)National Key Basic Research Program ("973" Program) (No.2004CB217904)
文摘The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.
基金This work has supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021R1A2C1010362)and the Soonchunhyang University Research Fund.
文摘This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and classification accuracy because of their irrelevance,redundancy,or less information;this pre-processing process is often known as feature selection.This technique is based on adopting a new optimization algorithm known as generalized normal distribution optimization(GNDO)supported by the conversion of the normal distribution to a binary one using the arctangent transfer function to convert the continuous values into binary values.Further,a novel restarting strategy(RS)is proposed to preserve the diversity among the solutions within the population by identifying the solutions that exceed a specific distance from the best-so-far and replace them with the others created using an effective updating scheme.This strategy is integrated with GNDO to propose another binary variant having a high ability to preserve the diversity of the solutions for avoiding becoming stuck in local minima and accelerating convergence,namely improved GNDO(IGNDO).The proposed GNDO and IGNDO algorithms are extensively compared with seven state-of-the-art algorithms to verify their performance on thirteen medical instances taken from the UCI repository.IGNDO is shown to be superior in terms of fitness value and classification accuracy and competitive with the others in terms of the selected features.Since the principal goal in solving the FS problem is to find the appropriate subset of features that maximize classification accuracy,IGNDO is considered the best.
基金supported by the National Natural Science Foundation of China (Grant No.71702087)the Youth Innovation Science and Technology Support Program of Shandong Province Higher Education (Grant No.2021RW024)the Special Funds for Taishan Scholars,Shandong (Grant No.tsqn202103063).
文摘The cap-and-offset regulation is a practical scheme to lessen carbon emissions.The retailer selling fresh products can adopt sustainable technologies to lessen greenhouse gas emissions.We aim to analyze the optimal joint strategies on order quantity and sustainable technology investment when the retailer faces stochastic market demand and can only acquire the mean and variance of distribution information.We construct a distributionally robust optimization model and use the Karush-Kuhn-Tucker(KKT)conditions to solve the analytic formula of optimal solutions.By comparing the models with and without investing in sustainable technologies,we examine the effect of sustainable technologies on the operational management decisions of the retailer.Finally,some computational examples are applied to analyze the impact of critical factors on operational strategies,and some managerial insights are given based on the analysis results.
基金supported in part by the National Natural Science Foundation of China(51977127)in part by the ShanghaiMunicipal Science and in part by the Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids.This paper proposes an optimization scheme based on the distributionally robust optimization(DRO)model for a microgrid considering solar-wind correlation.Firstly,scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function;then the generated scenario results are reduced by K-means clustering;finally,the probability confidence interval of scenario distribution is constrained by 1-norm and∞-norm.The model is solved by a column-and-constraint generation algorithm.Experimental studies are conducted on a microgrid system in Jiangsu,China and the obtained scheduling solution turned out to be superior under wind and solar power uncertainties,which verifies the effectiveness of the proposed DRO model.