In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solut...In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation and directly establish the optimal HSlder exponent for the derivative of a weak solution on its regular set.展开更多
We consider the partial regularity for weak solutions to superquadratic elliptic systems with controllable growth condition, under the assumption of Dini continuous coefficients. The proof relies upon an iteration sch...We consider the partial regularity for weak solutions to superquadratic elliptic systems with controllable growth condition, under the assumption of Dini continuous coefficients. The proof relies upon an iteration scheme of a decay estimate for a new type of excess functional. To establish the decay estimate, we use the technique of A-harmonic approximation and obtain a general criterion for a weak solution to be regular in the neighborhood of a given point. In particular, the proof yields directly the optimal H¨older exponent for the derivative of the weak solutions on the regular set.展开更多
基金Supported by NSF of China (10531020)the Education Department of Fujian Province(JK2009045)the Program of 985 Innovation Engieering on Information in Xiamen University(2004-2007)
文摘In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation and directly establish the optimal HSlder exponent for the derivative of a weak solution on its regular set.
基金Supported by the National Natural Science Foundation of China(No.10976026)Natural Science Foundation of Fujian Province(2012D102)
文摘We consider the partial regularity for weak solutions to superquadratic elliptic systems with controllable growth condition, under the assumption of Dini continuous coefficients. The proof relies upon an iteration scheme of a decay estimate for a new type of excess functional. To establish the decay estimate, we use the technique of A-harmonic approximation and obtain a general criterion for a weak solution to be regular in the neighborhood of a given point. In particular, the proof yields directly the optimal H¨older exponent for the derivative of the weak solutions on the regular set.