The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robus...The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.展开更多
Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding ...Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.展开更多
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat...The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09.展开更多
Background Asian population are at increased risk of bleeding during the warfarin treatment,so the recommended optimal international normalized ratio(INR)level may be lower in Asians than in Westerners.The aim of this...Background Asian population are at increased risk of bleeding during the warfarin treatment,so the recommended optimal international normalized ratio(INR)level may be lower in Asians than in Westerners.The aim of this prospective multicenter study was to determine the optimal INR level in Thai patients with non-valvular atrial fibrillation(NVAF).Methods Patients with NVAF who were on warfarin for stroke prevention were recruited from 27 hospitals in the nationwide COOL-AF registry in Thailand.We collected demographic data,medical history,risk factors for stroke and bleeding,concomitant disease,electrocardiogram and laboratory data including INR and antithrombotic medications.Outcome measurements included ischemic stroke/transient ischemic attack(TIA)and major bleeding.Optimal INR level was assessed by the calculation of incidence density for six INR ranges(<1.5,1.5–1.99,2–2.49,2.5–2.99,3–3.49,and≥3.5).Results A total of 2,232 patients were included.The mean age of patients was 68.5±10.6 years.The mean follow-up duration was 25.7±10.6 months.There were 63 ischemic stroke/TIA and 112 major bleeding events.The lowest prevalence of ischemic stroke/TIA and major bleeding events occurred within the INR range of 2.0–2.99 for patients<70 years and 1.5–2.99 for patients≥70 years.Conclusions The INR range associated with the lowest risk of ischemic stroke/TIA and bleeding in the Thai population was 2.0–2.99 for patients<70 years and 1.5–2.99 for patients≥70 years.The rates of major bleeding and ischemic stroke/TIA were both higher than the rates reported in Western population.展开更多
In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, ther...In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are ...The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.展开更多
Abnormal voltages such as electrostatic,constant current,and strong electromagnetic signals can erroneously trigger operation of MEMS pyrotechnics and control systems in a fuze,which may result in casualties.This stud...Abnormal voltages such as electrostatic,constant current,and strong electromagnetic signals can erroneously trigger operation of MEMS pyrotechnics and control systems in a fuze,which may result in casualties.This study designs a solid-state micro-scale switch by combining the corona gas discharge theory of asymmetric electric fields and Peek’s Law.The MEMS switch can be transferred from“off”to“on”through the gas breakdown between the corona electrodes.In the model,one of the two electrodes is spherical and the other flat,so a non-uniform electric field is formed around the electrodes.The theoretical work is as follows.First,the relation among the radius of curvature of the spherical electrode,the discharge gap,and the air breakdown voltage is obtained;to meet the low voltage(30-60 V)required to drive the MEMS switch,the radius of curvature of the spherical electrode needs to be 10 e50 mm and the discharge gap between the two electrodes needs to be 9e11 mm.Second,the optimal ratioεis introduced to parameterize the model.Finally,the corona discharge structural parameters are determined by comparing the theoretical and electric field simulation results.The switch is then fabricated via MEMS processing.A hardware test platform is built and the performing chip tested.It is found that when the electrode gap is 9 mm,the electrostatic voltage is at least 37.3 V,with an error of 2.6%between the actual and theoretical air breakdown voltages.When the electrode gap is 11 mm,the electrostatic voltage is at least 42.3 V,with an error of 10.5%between the actual and theoretical air breakdown voltages.Both cases meet the design requirements.展开更多
The numeric al simulation study on the temperature distribution of underground field for the ground coupled heat pump (GCHP) with vertical spira l coil was carried out by using finite element. The distribution and rec...The numeric al simulation study on the temperature distribution of underground field for the ground coupled heat pump (GCHP) with vertical spira l coil was carried out by using finite element. The distribution and recovery of undergroun d field temperature under different operation ratio and the optimal operation ratio were simulated.The performance parameters, i.e. inlet and outlet temperature of the ground spiral coil in heating and cooling modes were tested, the heat extracted or emitted by the heat pump to the ground was calculated, and the coefficients of performance (COP) of GCHP at heat ing and cooling modes were analyzed.展开更多
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
In Underwater Acoustic Sensor Network(UASN),routing and propagation delay is affected in each node by various water column environmental factors such as temperature,salinity,depth,gases,divergent and rotational wind.H...In Underwater Acoustic Sensor Network(UASN),routing and propagation delay is affected in each node by various water column environmental factors such as temperature,salinity,depth,gases,divergent and rotational wind.High sound velocity increases the transmission rate of the packets and the high dissolved gases in the water increases the sound velocity.High dissolved gases and sound velocity environment in the water column provides high transmission rates among UASN nodes.In this paper,the Modified Mackenzie Sound equation calculates the sound velocity in each node for energy-efficient routing.Golden Ratio Optimization Method(GROM)and Gaussian Process Regression(GPR)predicts propagation delay of each node in UASN using temperature,salinity,depth,dissolved gases dataset.Dissolved gases,rotational and divergent winds,and stress plays a major problem in UASN,which increases propagation delay and energy consumption.Predicted values from GPR and GROM leads to node selection and Corona Virus Optimization Algorithm(CVOA)routing is performed on the selected nodes.The proposed GPR-CVOA and GROM-CVOA algorithm solves the problem of propagation delay and consumes less energy in nodes,based on appropriate tolerant delays in transmitting packets among nodes during high rotational and divergent winds.From simulation results,CVOA Algorithm performs better than traditional DF and LION algorithms.展开更多
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire...To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.展开更多
As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental prob...As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental problem of mine heat damage to improve the efficiency of mineral resource exploitation and protect the physical and mental health of workers.One can apply thermal insulation coating on the walls of mine roadways as a means of implementing active heat insulation.In this paper,expanded perlite(EP)and glazed hollow bead(GHB)are used as the main thermal insulation materials,ceramsite and sand as aggregate,plus glass fiber and sodium dodecyl sulfate to develop a new lightweight composite thermal insulation coating through orthogonal experiment method.According to the plate heat flow meter method and mechanical test method,the thermal insulation and mechanical properties of EP-GHB mixed ceramsite coating were studied by making specimens with different parameter ratios,and according to the analysis of the experimental results,the optimal mix ratio of the coating was selected.In addition,Fluent numerical simulation software was used to establish the roadway model,and the thermal insulation effect of the coating in the roadway under different working conditions was studied.The results show that the thermal conductivity of the prepared composite thermal insulation coating material is only 8.5% of that of ordinary cement mortar,and the optimal thickness of adding thermal insulation coating is 0.2 m,which can reduce the outlet air temperature of the roadway with a length of 1000 m by 4.87 K at this thickness.The thermal insulation coating developed in this study has the advantages of simple technology and strong practicability,and has certain popularization and application value in mine heat damage control.展开更多
The production of deep well-shaped WC-Co cemented carbide blocks via industrial powder pressing remains a challenging technical problem,primarily due to the unsuitability of the forming agent.The forming agent paraffi...The production of deep well-shaped WC-Co cemented carbide blocks via industrial powder pressing remains a challenging technical problem,primarily due to the unsuitability of the forming agent.The forming agent paraffin wax was modified through four types of modifiers,including organic high-molecular-mass resins,plasticizers,surfactants and lubricants.The qualitative screening of resin types was explored and an orthogonal experiment involving the combination of these four paraffin wax modifiers was conducted to obtain an optimized quantitative ratio of modifiers.The results reveal that the insertion of the small molecule chain of resin into the interstitial spaces of paraffin wax crystals is likely a crucial factor for improving the compatibility between the resin and paraffin wax.Through orthogonal experiments,the optimized formulation for the forming agent is determined:100 parts of 58#paraffin wax,15 parts of EVA-2,4 parts of DPHP,4 parts of oleic acid amide and 2 parts of stearic acid.This optimized formulation is applied to industrial production at one Chinese company,and qualified deep well-shaped cemented carbide products are achieved,which contain 90wt%WC and 10wt%Co.展开更多
By optimizing pump power ratio between 1st order backward pump and 2nd order forward pump on discrete Raman amplifier, we demonstrated over 2dB noise figure improvement without excessive non-linearity degradation.
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b...Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA110101)
文摘The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.
文摘Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.
基金supported by the Scientific Research Fund of Yunnan Provincial Department of Education(2022Y286)15th Student Science and Technology Innovation and Entrepreneurship Action Fund Project of Yunnan Agricultural University(2022ZKX098)+1 种基金the Yunnan University Professional Degree Graduate Student Practical Innovation Fund Project(Grant Number ZC-22222374)the Scientific Research Fund Project of Yunnan Education Department(Grant Numbers 2023J1974 and 2023J1976).
文摘The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09.
基金the Health System Research Institute(59-053)the Heart Association of Thailand under the Royal Patronage of H.M.the King.All authors had no conflicts of interest to disclose.The authors gratefully acknowledge Pontawee Kaewcomdee and Olaree Chaiphet for data management,and all investigators and nurse coordinators of the COOL-AF registry.
文摘Background Asian population are at increased risk of bleeding during the warfarin treatment,so the recommended optimal international normalized ratio(INR)level may be lower in Asians than in Westerners.The aim of this prospective multicenter study was to determine the optimal INR level in Thai patients with non-valvular atrial fibrillation(NVAF).Methods Patients with NVAF who were on warfarin for stroke prevention were recruited from 27 hospitals in the nationwide COOL-AF registry in Thailand.We collected demographic data,medical history,risk factors for stroke and bleeding,concomitant disease,electrocardiogram and laboratory data including INR and antithrombotic medications.Outcome measurements included ischemic stroke/transient ischemic attack(TIA)and major bleeding.Optimal INR level was assessed by the calculation of incidence density for six INR ranges(<1.5,1.5–1.99,2–2.49,2.5–2.99,3–3.49,and≥3.5).Results A total of 2,232 patients were included.The mean age of patients was 68.5±10.6 years.The mean follow-up duration was 25.7±10.6 months.There were 63 ischemic stroke/TIA and 112 major bleeding events.The lowest prevalence of ischemic stroke/TIA and major bleeding events occurred within the INR range of 2.0–2.99 for patients<70 years and 1.5–2.99 for patients≥70 years.Conclusions The INR range associated with the lowest risk of ischemic stroke/TIA and bleeding in the Thai population was 2.0–2.99 for patients<70 years and 1.5–2.99 for patients≥70 years.The rates of major bleeding and ischemic stroke/TIA were both higher than the rates reported in Western population.
文摘In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
基金the National Natural Science Foundation of China(31870543)the Youth Science and Technology Innovation Fund of Nanjing Forestry University(cx2016017)+4 种基金the National Key R&D Program of China(2017YFC0703501)the National Natural Science Foundation of China(51878590)Jiangsu Province High-level Talent Selection Training(JNHB-127)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)for their funding。
文摘The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.
文摘Abnormal voltages such as electrostatic,constant current,and strong electromagnetic signals can erroneously trigger operation of MEMS pyrotechnics and control systems in a fuze,which may result in casualties.This study designs a solid-state micro-scale switch by combining the corona gas discharge theory of asymmetric electric fields and Peek’s Law.The MEMS switch can be transferred from“off”to“on”through the gas breakdown between the corona electrodes.In the model,one of the two electrodes is spherical and the other flat,so a non-uniform electric field is formed around the electrodes.The theoretical work is as follows.First,the relation among the radius of curvature of the spherical electrode,the discharge gap,and the air breakdown voltage is obtained;to meet the low voltage(30-60 V)required to drive the MEMS switch,the radius of curvature of the spherical electrode needs to be 10 e50 mm and the discharge gap between the two electrodes needs to be 9e11 mm.Second,the optimal ratioεis introduced to parameterize the model.Finally,the corona discharge structural parameters are determined by comparing the theoretical and electric field simulation results.The switch is then fabricated via MEMS processing.A hardware test platform is built and the performing chip tested.It is found that when the electrode gap is 9 mm,the electrostatic voltage is at least 37.3 V,with an error of 2.6%between the actual and theoretical air breakdown voltages.When the electrode gap is 11 mm,the electrostatic voltage is at least 42.3 V,with an error of 10.5%between the actual and theoretical air breakdown voltages.Both cases meet the design requirements.
文摘The numeric al simulation study on the temperature distribution of underground field for the ground coupled heat pump (GCHP) with vertical spira l coil was carried out by using finite element. The distribution and recovery of undergroun d field temperature under different operation ratio and the optimal operation ratio were simulated.The performance parameters, i.e. inlet and outlet temperature of the ground spiral coil in heating and cooling modes were tested, the heat extracted or emitted by the heat pump to the ground was calculated, and the coefficients of performance (COP) of GCHP at heat ing and cooling modes were analyzed.
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
文摘In Underwater Acoustic Sensor Network(UASN),routing and propagation delay is affected in each node by various water column environmental factors such as temperature,salinity,depth,gases,divergent and rotational wind.High sound velocity increases the transmission rate of the packets and the high dissolved gases in the water increases the sound velocity.High dissolved gases and sound velocity environment in the water column provides high transmission rates among UASN nodes.In this paper,the Modified Mackenzie Sound equation calculates the sound velocity in each node for energy-efficient routing.Golden Ratio Optimization Method(GROM)and Gaussian Process Regression(GPR)predicts propagation delay of each node in UASN using temperature,salinity,depth,dissolved gases dataset.Dissolved gases,rotational and divergent winds,and stress plays a major problem in UASN,which increases propagation delay and energy consumption.Predicted values from GPR and GROM leads to node selection and Corona Virus Optimization Algorithm(CVOA)routing is performed on the selected nodes.The proposed GPR-CVOA and GROM-CVOA algorithm solves the problem of propagation delay and consumes less energy in nodes,based on appropriate tolerant delays in transmitting packets among nodes during high rotational and divergent winds.From simulation results,CVOA Algorithm performs better than traditional DF and LION algorithms.
文摘To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.
基金supported by the National Natural Science Foundation of China(No.52374209)the Natural Science Foundation of Shandong Province(No.ZR2023QE080).
文摘As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental problem of mine heat damage to improve the efficiency of mineral resource exploitation and protect the physical and mental health of workers.One can apply thermal insulation coating on the walls of mine roadways as a means of implementing active heat insulation.In this paper,expanded perlite(EP)and glazed hollow bead(GHB)are used as the main thermal insulation materials,ceramsite and sand as aggregate,plus glass fiber and sodium dodecyl sulfate to develop a new lightweight composite thermal insulation coating through orthogonal experiment method.According to the plate heat flow meter method and mechanical test method,the thermal insulation and mechanical properties of EP-GHB mixed ceramsite coating were studied by making specimens with different parameter ratios,and according to the analysis of the experimental results,the optimal mix ratio of the coating was selected.In addition,Fluent numerical simulation software was used to establish the roadway model,and the thermal insulation effect of the coating in the roadway under different working conditions was studied.The results show that the thermal conductivity of the prepared composite thermal insulation coating material is only 8.5% of that of ordinary cement mortar,and the optimal thickness of adding thermal insulation coating is 0.2 m,which can reduce the outlet air temperature of the roadway with a length of 1000 m by 4.87 K at this thickness.The thermal insulation coating developed in this study has the advantages of simple technology and strong practicability,and has certain popularization and application value in mine heat damage control.
文摘The production of deep well-shaped WC-Co cemented carbide blocks via industrial powder pressing remains a challenging technical problem,primarily due to the unsuitability of the forming agent.The forming agent paraffin wax was modified through four types of modifiers,including organic high-molecular-mass resins,plasticizers,surfactants and lubricants.The qualitative screening of resin types was explored and an orthogonal experiment involving the combination of these four paraffin wax modifiers was conducted to obtain an optimized quantitative ratio of modifiers.The results reveal that the insertion of the small molecule chain of resin into the interstitial spaces of paraffin wax crystals is likely a crucial factor for improving the compatibility between the resin and paraffin wax.Through orthogonal experiments,the optimized formulation for the forming agent is determined:100 parts of 58#paraffin wax,15 parts of EVA-2,4 parts of DPHP,4 parts of oleic acid amide and 2 parts of stearic acid.This optimized formulation is applied to industrial production at one Chinese company,and qualified deep well-shaped cemented carbide products are achieved,which contain 90wt%WC and 10wt%Co.
文摘By optimizing pump power ratio between 1st order backward pump and 2nd order forward pump on discrete Raman amplifier, we demonstrated over 2dB noise figure improvement without excessive non-linearity degradation.
基金supported by the National Natural Science Foundation of China(Grant Nos.51605219&51375007)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20160791&SBK2015022352)+1 种基金the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-201608,SKLMTKFKT-2014010&SKLMT-KFKT-201507)the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)
文摘Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.