The Shuangwang gold deposit, located in the Fengxian-Taibai fore-arc basin in the western Qinling Orogen of Central China, has yielded over 70 tons of gold. It is an orogenic gold deposit occurring in an NW-trending b...The Shuangwang gold deposit, located in the Fengxian-Taibai fore-arc basin in the western Qinling Orogen of Central China, has yielded over 70 tons of gold. It is an orogenic gold deposit occurring in an NW-trending breccia belt. Most of the ores are hydrothermal breccia type containing fragments of adjacent strata cemented by ankerite and pyrite. Pyrite is the most abundant metallic mineral and the major gold-bearing mineral in the ores. A total of 58 pyrite samples from main ore bodies of the Shuangwang gold deposit have been analysed for 44 trace elements by HR-ICP-MS. Sb, Ba, Cu, Pb, Zn, Bi, Mo, Co are selected as indicator elements to investigate the potential usefulness of trace elements in pyrite as an indicator in gold exploration. The results show that the supra-ore halo elements Sb and Ba, which may have been more active than other near-ore halo elements and sub-ore halo elements, are best to characterize the shape of ore bodies. Five target areas are pointed out for deep ore exploration based on a comprehensive study of supra-ore, near-ore and sub-ore halos. This study provides evidence that trace elements in pyrite can be used to depict the deep extension of ore bodies and to vector towards undiscovered ore bodies.展开更多
Over the pastfive years,we have been making efforts to develop a practical and predic- tive tool to exploreforgiantore deposits in hydrothermal systems. Towards this goal,a sig- nificant progress has been made towards...Over the pastfive years,we have been making efforts to develop a practical and predic- tive tool to exploreforgiantore deposits in hydrothermal systems. Towards this goal,a sig- nificant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems. On the scientific developmentside,we have developed analytical solutions to answerthe fol- lowing scientific questions:(1) Can thepore- fluid pressure gradientbemaintained atthe val- ue of the lithostaticpressure gradientin the uppercrustof the Earth?and(2 ) Can convective pore- fluid flow take place in the uppercrustof the Earth ifthere is a fluid/mass leakage from the mantle to the upper crustof the Earth?On the modelling developmentside,we have developed numerical methods to model the following problems:(1) convective pore- fluid flow in two- dimensional hydrothermal systems;(2 ) coupled reactive pore- fluid flow and multiple species transport in porous media;(3) precipitation and dissolution of minerals and rock al- teration in the upper crust of the Earth;(4 ) double diffusion driven reactive flow transport in deformable fluid- saturated porous media with particular consideration of temperature- de- pendentchemical reaction rates;(5 ) pore- fluid flow patterns neargeological lenses in hydro- dynamic and hydrothermal systems;(6 ) dissipative structures for nonequilibrium chemical reactions in fluid- saturated porousmedia;(7) convectivepore- fluid flow and the related min- eralization in three- dimensional hydrothermal systems;(8) fluid- rock interaction problems associated with the rock alteration and metamorphic process in fluid- saturated hydrothermal/ sedimentary basins;and (9) various aspects of the fully coupled problem involving material deformation,pore- fluid flow,heattransferand species transport/ chemical reactionsin pore- fluid saturated porous rock masses. The above- mentioned work has significantly enriched our knowledge about the physical and chemical processes related to ore body formation and mineralization in the upper crustof the展开更多
基金supported by the National Natural Science Foundation of China(Nos.41230311,41272106,41030423)the Special Program on Mineral Resources Survey from CGS(No.1212011220923)
文摘The Shuangwang gold deposit, located in the Fengxian-Taibai fore-arc basin in the western Qinling Orogen of Central China, has yielded over 70 tons of gold. It is an orogenic gold deposit occurring in an NW-trending breccia belt. Most of the ores are hydrothermal breccia type containing fragments of adjacent strata cemented by ankerite and pyrite. Pyrite is the most abundant metallic mineral and the major gold-bearing mineral in the ores. A total of 58 pyrite samples from main ore bodies of the Shuangwang gold deposit have been analysed for 44 trace elements by HR-ICP-MS. Sb, Ba, Cu, Pb, Zn, Bi, Mo, Co are selected as indicator elements to investigate the potential usefulness of trace elements in pyrite as an indicator in gold exploration. The results show that the supra-ore halo elements Sb and Ba, which may have been more active than other near-ore halo elements and sub-ore halo elements, are best to characterize the shape of ore bodies. Five target areas are pointed out for deep ore exploration based on a comprehensive study of supra-ore, near-ore and sub-ore halos. This study provides evidence that trace elements in pyrite can be used to depict the deep extension of ore bodies and to vector towards undiscovered ore bodies.
文摘Over the pastfive years,we have been making efforts to develop a practical and predic- tive tool to exploreforgiantore deposits in hydrothermal systems. Towards this goal,a sig- nificant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems. On the scientific developmentside,we have developed analytical solutions to answerthe fol- lowing scientific questions:(1) Can thepore- fluid pressure gradientbemaintained atthe val- ue of the lithostaticpressure gradientin the uppercrustof the Earth?and(2 ) Can convective pore- fluid flow take place in the uppercrustof the Earth ifthere is a fluid/mass leakage from the mantle to the upper crustof the Earth?On the modelling developmentside,we have developed numerical methods to model the following problems:(1) convective pore- fluid flow in two- dimensional hydrothermal systems;(2 ) coupled reactive pore- fluid flow and multiple species transport in porous media;(3) precipitation and dissolution of minerals and rock al- teration in the upper crust of the Earth;(4 ) double diffusion driven reactive flow transport in deformable fluid- saturated porous media with particular consideration of temperature- de- pendentchemical reaction rates;(5 ) pore- fluid flow patterns neargeological lenses in hydro- dynamic and hydrothermal systems;(6 ) dissipative structures for nonequilibrium chemical reactions in fluid- saturated porousmedia;(7) convectivepore- fluid flow and the related min- eralization in three- dimensional hydrothermal systems;(8) fluid- rock interaction problems associated with the rock alteration and metamorphic process in fluid- saturated hydrothermal/ sedimentary basins;and (9) various aspects of the fully coupled problem involving material deformation,pore- fluid flow,heattransferand species transport/ chemical reactionsin pore- fluid saturated porous rock masses. The above- mentioned work has significantly enriched our knowledge about the physical and chemical processes related to ore body formation and mineralization in the upper crustof the