Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the fiel...Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.展开更多
A solvent-non-solvent method invented in our laboratory for preparing non-covalently con- nected micelles (NCCM) was used to intercalate melamine (MA) molecules into stearic acid (SA) bilayers to form tile compo...A solvent-non-solvent method invented in our laboratory for preparing non-covalently con- nected micelles (NCCM) was used to intercalate melamine (MA) molecules into stearic acid (SA) bilayers to form tile composite nanoparticles with an intercalated nanostructure in which a melamine bilayer is sandwiched between two stearic acid bilayers, NCCM method helps to sufficiently mix the two components in nanospace and meanwhile inhibits the strong tendency of self-crystallization of MA, leading to the intercalation. Although the nanopar- ticles have a regular inner structure, the primary MA/SA nanoparticles have an irregular morphology. Regular nanoparticles were obtained through annealing the suspension of the primary nanoparticles. Through annealing at different temperatures, the MA/SA compos- ite nanowires and vesicles with an intercalated structure were prepared respectively. It is proposed that the morphological change results from the change in the intercalated structure.展开更多
A new process for manufacturing organically compounded bentonite was devcloped successfully based on the organic intercalation andlayered structure of bentonitc.The main steps in the proposed process included wet sodi...A new process for manufacturing organically compounded bentonite was devcloped successfully based on the organic intercalation andlayered structure of bentonitc.The main steps in the proposed process included wet sodium activation of bentonite ore,organic com-pounding and high-pressure roll grinding.The optimum procedure is recommended as follows:5 mass%of sodium carbonate powderand 30 wt.%water are added to activate the bentonite ore for 24 h to prepare activated bentonice;0.5 wt.%of organic molecules are adiedinto the activated bentonite for organic compounding for 12 h:then,the high-pressure rollgrinding is followed to treat the organicallycompounded bentonice;:and finally,drying and fine prinding are performed for prenaring the final organically compounded bentoniteprodiuct with 10 wt.%moisture and 98% passing 0.074 mm.The obtained organically compounded bentonite was characterized usingan X-ray diffractometer,a scanning electron microscope and anX-ray photoelectron spectrometer.To confirm the effect of organicallycompounded bentonite on green balls,the pelletizing tests were carried out.The rexsults showed that high-pressure roll grinding can notonly enhance the ability of the crystal layer to hold the combined water.but also strengthen the intercalation compounding of the organicadditive,which is beneficial for the formation of a fiber-interlaced structure of the organically compounded bentonite and improvesthe quality index of the bentonite itself.Also,the organically compounded bentonite is helpiul to improve the indexes of green balls.展开更多
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000)the National Natural Science Foundation of China (Grant No. 11888101)+2 种基金the National Key R&D Program of China (Grant No. 2017YFA0303001)the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY160000)the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDYSSW-SLH021)。
文摘Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.
文摘A solvent-non-solvent method invented in our laboratory for preparing non-covalently con- nected micelles (NCCM) was used to intercalate melamine (MA) molecules into stearic acid (SA) bilayers to form tile composite nanoparticles with an intercalated nanostructure in which a melamine bilayer is sandwiched between two stearic acid bilayers, NCCM method helps to sufficiently mix the two components in nanospace and meanwhile inhibits the strong tendency of self-crystallization of MA, leading to the intercalation. Although the nanopar- ticles have a regular inner structure, the primary MA/SA nanoparticles have an irregular morphology. Regular nanoparticles were obtained through annealing the suspension of the primary nanoparticles. Through annealing at different temperatures, the MA/SA compos- ite nanowires and vesicles with an intercalated structure were prepared respectively. It is proposed that the morphological change results from the change in the intercalated structure.
基金The authors wish to express thanks to NationalNatural Science Foundation of China(No.5147416l)Innovation-driven Project of Guangxi Zhuang Autonomous Region(Nos.AA18242003 and AA148242003)。
文摘A new process for manufacturing organically compounded bentonite was devcloped successfully based on the organic intercalation andlayered structure of bentonitc.The main steps in the proposed process included wet sodium activation of bentonite ore,organic com-pounding and high-pressure roll grinding.The optimum procedure is recommended as follows:5 mass%of sodium carbonate powderand 30 wt.%water are added to activate the bentonite ore for 24 h to prepare activated bentonice;0.5 wt.%of organic molecules are adiedinto the activated bentonite for organic compounding for 12 h:then,the high-pressure rollgrinding is followed to treat the organicallycompounded bentonice;:and finally,drying and fine prinding are performed for prenaring the final organically compounded bentoniteprodiuct with 10 wt.%moisture and 98% passing 0.074 mm.The obtained organically compounded bentonite was characterized usingan X-ray diffractometer,a scanning electron microscope and anX-ray photoelectron spectrometer.To confirm the effect of organicallycompounded bentonite on green balls,the pelletizing tests were carried out.The rexsults showed that high-pressure roll grinding can notonly enhance the ability of the crystal layer to hold the combined water.but also strengthen the intercalation compounding of the organicadditive,which is beneficial for the formation of a fiber-interlaced structure of the organically compounded bentonite and improvesthe quality index of the bentonite itself.Also,the organically compounded bentonite is helpiul to improve the indexes of green balls.