This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundame...In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.展开更多
Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and pu...Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
文摘In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.
文摘Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.