As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and...As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and portable electronic devices.However,due to inherent working properties of TENG itself such as extremely high internal impedance,pulse,and alternating current(AC)output,TENG can not directly supply power to loads such as batteries efficiently.Based on these,we describe TENG’s performance from a new perspective of powering ability.It consists of two aspects:the ability to transport charge effectively and the ability to output high power quality current steadily.In order to push forward the developments and applications of TENG,it is necessary to improve its power supply capacity from different perspectives.Fortunately,in recent years,a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress.Herein,this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG.Then,on basis of theoretical analysis,the output signal’s management strategies are elaborated from four aspects:improving the cycle output electricity of TENG,increasing the surface charge density of TENG,improving the power quality of TENG-based energy harvesting system,promoting the application of TENG through integrated circuit(IC)technology and TENG network,and the relevant principles and applications are discussed systematically.Finally,the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed,and the future development of the output signal’s management strategies for TENG is prospected.展开更多
A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. ...A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. By means of numerical calculation, the results indicate that (i) at some fixed noise intensities, the output signal amplitude with inertial mass exhibits the structure of a single peak and single valley, or even two peaks if the dichotomous noise is asymmetric; (ii) in the case of asymmetric dichotomous noise, the inertial mass can cause non-monotonic behaviour of the output signal amplitude with respect to noise intensity; (iii) the curve of SNR versus inertial mass displays a maximum in the case of asymmetric dichotomous noise, i.e., a resonance-like phenomenon, while it decreases monotonically in the case of symmetric dichotomous noise; (iv) if the noise is symmetric, the inertial mass can induce stochastic resonance in the system.展开更多
This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
Cavity beam position monitor(BPM) is widely used in a precise electron beam position measurement. Based on high performance oscilloscope-embedded EPICS input/output controller,we developed an on-line cavity BPM signal...Cavity beam position monitor(BPM) is widely used in a precise electron beam position measurement. Based on high performance oscilloscope-embedded EPICS input/output controller,we developed an on-line cavity BPM signal processing system for fast data acquisition solution when designing a cavity BPM.Also,methods for extracting the position information from cavity pickup signals and calibration algorithm are included in this solution.展开更多
In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing error...In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.展开更多
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,...针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
基金funded by the National Key R&D Project from Minister of Science and Technology(No.2021YFA1201602)the National Natural Science Foundation of China(Nos.52172203 and U21A20175).
文摘As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and portable electronic devices.However,due to inherent working properties of TENG itself such as extremely high internal impedance,pulse,and alternating current(AC)output,TENG can not directly supply power to loads such as batteries efficiently.Based on these,we describe TENG’s performance from a new perspective of powering ability.It consists of two aspects:the ability to transport charge effectively and the ability to output high power quality current steadily.In order to push forward the developments and applications of TENG,it is necessary to improve its power supply capacity from different perspectives.Fortunately,in recent years,a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress.Herein,this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG.Then,on basis of theoretical analysis,the output signal’s management strategies are elaborated from four aspects:improving the cycle output electricity of TENG,increasing the surface charge density of TENG,improving the power quality of TENG-based energy harvesting system,promoting the application of TENG through integrated circuit(IC)technology and TENG network,and the relevant principles and applications are discussed systematically.Finally,the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed,and the future development of the output signal’s management strategies for TENG is prospected.
基金supported by the National Natural Science Foundations of China (Grant No. 10847139)the Science Foundation of Yunnan Province of China (Grant Nos. 2009CD036 and 08Z0015)
文摘A linear system driven by dichotomous noise and a periodic signal is investigated in the underdamped case. The exact expressions of output signal amplitude and signal-to-noise ratio (SNR) of the system are derived. By means of numerical calculation, the results indicate that (i) at some fixed noise intensities, the output signal amplitude with inertial mass exhibits the structure of a single peak and single valley, or even two peaks if the dichotomous noise is asymmetric; (ii) in the case of asymmetric dichotomous noise, the inertial mass can cause non-monotonic behaviour of the output signal amplitude with respect to noise intensity; (iii) the curve of SNR versus inertial mass displays a maximum in the case of asymmetric dichotomous noise, i.e., a resonance-like phenomenon, while it decreases monotonically in the case of symmetric dichotomous noise; (iv) if the noise is symmetric, the inertial mass can induce stochastic resonance in the system.
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
基金Supported by National Natural Science Foundation(Grant No.11075198)
文摘Cavity beam position monitor(BPM) is widely used in a precise electron beam position measurement. Based on high performance oscilloscope-embedded EPICS input/output controller,we developed an on-line cavity BPM signal processing system for fast data acquisition solution when designing a cavity BPM.Also,methods for extracting the position information from cavity pickup signals and calibration algorithm are included in this solution.
文摘In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.
文摘针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
文摘单电感双输出(single-inductor dual-output,SIDO)开关变换器工作在共享充放时序下存在电感电流纹波大、输出支路间交叉影响严重以及电路参数宽范围变化下控制电路不能正常工作等问题.为此,提出一种独立充放时序电流型变频控制(current-mode variable frequency control,C-VF)技术.首先,具体描述变换器在连续导电模式(continuous conduction mode,CCM)下的工作原理,并推导主电路开环传递函数;进一步构建闭环小信号模型,推导闭环交叉阻抗,详细分析不同输出电压及负载电流下变换器的交叉影响特性;最后,通过仿真和实验进行验证.研究表明:相较于共享充放时序,独立充放时序C-VF CCM SIDO buck变换器减小了交叉影响,改善了负载瞬态响应性能;当两支路负载电压不等时,减轻某一支路负载可以降低该支路的交叉影响;当两支路输出电压相同但负载不同时,重载支路对轻载支路的交叉影响更小.