The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surfa...The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surface area of 133.7 m^(2)/g.NAPT and DAPT were incorporated into the silicone rubber to obtain the composite NAPTSR and DAPT-SR by mechanical blending method,respectively.After thermal oxidative ageing at 300℃ for 0.5 h,temperature for the 5%weight loss increased greatly from 385℃ of the neat silicone rubber to 396-399℃ with addition of NAPT and DAPT.NAPT and DAPT enhanced the interaction between the filler nanoparticles and rubber matrix thus inhibited the nanoparticle agglomeration.The conservation rate of the side methyl group in NAPT-SR and DAPT-SR was greatly improved after ageing.Therefore,the thermal oxidative degradation and ageing performance of the silicone rubber composites was significantly reinforced.Moreover,DAPT could greatly restrain the growth of nanoparticles after ageing.Therefore,DAPT-SR showed the better retention of tensile strength(40.6%),elongation at break(34.9%)and tear strength(30.1%)compared with the corresponding mechanical properties of the neat silicone rubber(10.6%,7.4%,and 5.0%)after ageing.展开更多
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO ...A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.展开更多
Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that...Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.展开更多
In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),an...In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),and differential scanning calorimetry(DSC)was established,respectively,to calculate the activation energy of lubricant thermal-oxidative reaction.The thermal analyses of TG and DTA were employed to determine the thermal decomposition properties of ester oils trimethylolpropane trioleate(TMPTO)with butyl-octyl-diphenylamine/octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate/amine-phenol combination antioxidant.The activation energy of the lubricating oil adding antioxidant is increased relative to the TMPTO base oil,and the order of activation energy are Ec(93.732 kJ·mol^(-1))>Ed(88.71 kJ·mol^(-1))>Eb(58.41 kJ·mol^(-1))>Ea(46.32 kJ·mol^(-1)).The experimental results show that octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate in TMPTO has favorable resistance to thermal oxidation and decomposition.The thermal analysis method of DSC accurately reflects the heat exchange of lubricant thermal-oxidative reaction.The order of activation energy is calculated to ED(144.385 kJ·mol^(-1))>EC(110.05 kJ·mol^(-1))>EB(97.187 kJ·mol^(-1))>EA(66.02 kJ·mol^(-1)).It is illustrated that the amine-phenol combination antioxidant has the best thermal oxidation resistance,which is the same as what the oxidation onset temperature effected.展开更多
Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradat...Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradation of azo dyes was developed. Acid orange 7 (AO7) was selected as the model for azo dye and the high efficient degradation was achieved in hemin/H2O2 system at pH 11.0. Degradation could be described by a pseudo-first-order kinetic model. The order of dependence on H2O2 concentration was significantly larger than that of hemin. Coexisting anions sulphate and chloride had little effect on the degradation, but reductive sulphite dramatically inhibited the degradation. The protic solvent 2-prophanol obviously promoted the degradation. Azo chromogenic group was destroyed quickly and some smaller intermediates formed. Active species oxoferryl porphyrin p-cation radical +PFeIV=O generated from heterolytic cleavage of O-O in H2O2 catalyzed by hemin play the main roles in degradation and reaction pathways were proposed.展开更多
2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorinatio...2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorination means and might have a future in the oxidative removal of chlorinated phenols. In addition, a stepwise degradation of TCP, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol via substitution, is proposed through a detailed analysis of gas chromatography/mass spectrometry.展开更多
Treatment of biliverdin IXα dimethyl ester(2)with silver nitrate in alkaline solution gave two violin-like tripyrrione carbaldehydes,one de- graded at C15-C16,other at C4-C5.Biliverdin IXα(1),bilirubin IXα(3)and it...Treatment of biliverdin IXα dimethyl ester(2)with silver nitrate in alkaline solution gave two violin-like tripyrrione carbaldehydes,one de- graded at C15-C16,other at C4-C5.Biliverdin IXα(1),bilirubin IXα(3)and its dimethyl ester(4)gave the same results.展开更多
This work investigates the effect of chemical structural positioning of different functional groups in 29 amines covering primary,secondary and tertiary alkanolamines as well as multi-alkylamines and cyclic amines on ...This work investigates the effect of chemical structural positioning of different functional groups in 29 amines covering primary,secondary and tertiary alkanolamines as well as multi-alkylamines and cyclic amines on both amine degradation and ammonia(NH_(3))emissions during post-combustion amine-based carbon dioxide capture.The results helped to elucidate possible relation-ships between degradation and emissions as related to the chemical structure of the amine.The results showed that longer alkyl chain lengths in multi-alkylamines caused a more drastic decrease in both degradation and NH_(3) emissions followed by secondary alkanolamines.The decrease in those activities for primary and tertiary alkanolamines as well as cyclic amines was low and more so for NH_(3) emissions.In contrast,the increase in hydroxyl groups in secondary alkanolamines caused a drastic increase in degrad-ation and NH_(3) emissions.On the other hand,having more hydroxyl groups in sterically hindered primary and tertiary alkanolamines caused a more drastic decrease in degradation and a smaller decrease in NH_(3) emissions due to the steric hindrance within their structure.An increase in the number of amino groups in an amine caused an increase in both degradation and NH_(3) emission rates because these provided the reactive sites for the formation of free radicals.This effect was not as large in alkyl-cyclic amines as in multi-alkylamines due to the ability of the former to resist oxidative degradation.Furthermore,branched alkyl groups between amino and hydroxyl groups more drastically increased both the degradation and NH_(3) emission activities than branched alkyl groups located at the nitrogen atom.展开更多
Enhancement of Fe3O4/Au nanoparticles (Fe3O4/Au NPs) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4/Au nanoparticles, di...Enhancement of Fe3O4/Au nanoparticles (Fe3O4/Au NPs) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4/Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst-activated decomposition of H2O2 to ,OH radical, which was one of the strong oxidizing species. Besides, Fe3O4/Au nanoparticles have exhibited satisfying recycle performance for potential industrial application.展开更多
In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimi...In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimize the oxidation of basic dye(Methylene Blue(MB)),including the molar ratio of MnO2to chloroauric acid(HAu Cl4),the p H of the solution and the effect of initial material.Under the optimal condition,the highest degradation efficiency for MB achieved to 98.9%within 60 min,which was obviously better than commercial MnO2powders(4.3%)and MnO2nanosheets(74.2%).The enhanced oxidative degradation might attribute to the in-situ generation of ultra-small and highly-dispersed Au-NPs which enlarged the synergistic effect and/or interfacial effect between MnO2nanosheets and Au-NPs and facilitated the uptake of electrons by MnO2from MB during the oxidation,thus validating the application of MnO2/Au-NPs nanocomposite for direct removal of organic dyes from wastewater in a simple and convenient fashion.展开更多
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with...Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.展开更多
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still...Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins.展开更多
The factors and mechanisms of oxidative degradation of three organophosphorus pesticides (dichlorvos, methamidophos and phoxim) were studied with sodium percarbonate (SPC) as a solid oxidant. The result showed tha...The factors and mechanisms of oxidative degradation of three organophosphorus pesticides (dichlorvos, methamidophos and phoxim) were studied with sodium percarbonate (SPC) as a solid oxidant. The result showed that SPC has highly activity in degrading these organophosphous pesticides. The most efficient degradation of pesticides occurred under basic conditions and the degradation rates increased with time extension and high temperature. The degradation of organophosphorus pesticides was expected to get even better results at lower initial concentration. Furthermore, we analyzed the intermediate products by NMP, spectrometry. On the basis of the analytical result, the oxidative degradation mechanism was proposed for each organophosphous pesticide. It is significant to understand the environment chemistry of organophosphorus pesticides in environmental system.展开更多
The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in in...The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.展开更多
In Fenton-like oxidation,the catalyst directly influences the reaction mechanism for the degradation of pollutants from water.Here,a α-MnO_(2)catalyst(OAm-1)was synthesized via a self-assembly method with the assista...In Fenton-like oxidation,the catalyst directly influences the reaction mechanism for the degradation of pollutants from water.Here,a α-MnO_(2)catalyst(OAm-1)was synthesized via a self-assembly method with the assistance of a surfactant.OAm-1 possessed a large specific surface area of_(2)21 m2/g,abundant mesoporous structures and a large proportion of Mn(III).Further characterization exhibited that OAm-1 had abundant oxygen vacancies and excellent reducibility and conductivity.The adsorption and catalytic ability of OAm-1 were studied in the degradation of oxytetracycline(OTC)via the activation of hydrogen peroxide(H_(2)O_(2)).Through the radical quenching experiments,electron resonance spectroscopy(EPR),X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR)analysis,Mn(III)of OAm-1 was proved to be the active sites for the chemisorption of OTC.Systematic electrochemical ex-periments and analysis have shown that a process of electron transfer mediated by OAm-1 occurred be-tween the pollutant and H_(2)O_(2)during a Fenton-like reaction.This work experimentally verifies the elec-tron transfer process dominated nonradical mechanism overα-MnO_(2),which is helpful for understanding the catalytic mechanism of the Fenton-like oxidation.展开更多
High-temperature proton exchange membrane fuel cells(HT-PEMFCs)are pursued worldwide as efficient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid(PA)-base...High-temperature proton exchange membrane fuel cells(HT-PEMFCs)are pursued worldwide as efficient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid(PA)-based proton exchange membrane(PEM)of HT-PEMFCs.This review focuses on recent advances in the limitations of acid-based PEM(acid leaching,oxidative degradation,and mechanical degradation)and the approaches mitigating the membrane degradation.Preparing multilayer or polymers with continuous network,adding hygroscopic inorganic materials,and introducing PA doping sites or covalent interactions with PA can effectively reduce acid leaching.Membrane oxidative degradation can be alleviated by synthesizing crosslinked or branched polymers,and introducing antioxidative groups or highly oxidative stable materials.Crosslinking to get a compact structure,blending with stable polymers and inorganic materials,preparing polymer with high molecular weight,and fabricating the polymer with PA doping sites away from backbones,are recommended to improve the membrane mechanical strength.Also,by comparing the running hours and decay rate,three current approaches,1.crosslinking via thermally curing or polymeric crosslinker,2.incorporating hygroscopic inorganic materials,3.increasing membrane layers or introducing strong basic groups and electron-withdrawing groups,have been concluded to be promising approaches to improve the durability of HT-PEMFCs.The overall aim of this review is to explore the existing degradation challenges and opportunities to serve as a solid basis for the deployment in the fuel cell market.展开更多
A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐progr...A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐programmed reduction by H2,cyclic voltammetry,and temperature‐programmed desorption by O2.The results showed that Mo6+diffused into the Cu‐Fe‐O crystal lattice and then formed a new crystalline phase of CuMoO4.The Mo‐Cu‐Fe‐O catalyst had redox properties,and its surface contained active sites for oxygen adsorption.In addition,the catalytic activity of the Mo‐Cu‐Fe‐O composite was evaluated by the degradation of Cationic Red GTL,Crystal Violet,and Acid Red in catalytic wet air oxidation(CWAO)at ambient temperature and pressure.The Mo‐Cu‐Fe‐O catalyst showed excellent activity at basic conditions for the degradation of Cationic Red GTL.High removal efficiencies of91.5%and92.8%were achieved for Cationic Red GTL and Crystal Violet,respectively,in wastewater,and the efficiency remained high after seven cycles.However,almost no degradation of Acid Red occurred in the CWAO process.Furthermore,hydroxyl radicals were formed in the CWAO process,which induced the decomposition of the two cationic dyes in wastewater,and the toxicity of their effluents was decreased after degradation.The results indicate that the Mo‐Cu‐Fe‐O composite shows excellent catalytic activity for the treatment of wastewater contaminated with cationic dyes.展开更多
The characteristics of water quality had significant effects on the oxidative degradation of O_3/H_2O_2 system.In this study,iron supported on activated carbon catalyst was prepared firstly,and then the treatment of l...The characteristics of water quality had significant effects on the oxidative degradation of O_3/H_2O_2 system.In this study,iron supported on activated carbon catalyst was prepared firstly,and then the treatment of landfill leachate by O_3/H_2O_2/catalyst system was analyzed,especially the roles of H_2O_2 in the oxidation of landfill leachate by O_3/H_2O_2 system.The results showed that at room temperature,when the dosage of the catalyst was 1.0g,the removal rate of COD from the landfill leachate reached 79.8% after 50 ml of the landfill leachate(pH=3)was oxidized by O_3(its flow rate was 5g/h)for 50 min.If 0.3ml of H_2O_2 was added to the landfill leachate,the removal rate of COD increased from 79.8%to 88.7%.It showed that the landfill leachate with the characteristics of complex composition and difficult biodegradation could be effectively degraded by the O_3/H_2O_2 system.展开更多
The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was e...The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.展开更多
基金supported by the Key Special Program on the S&T for the Pollution Control and Treatment of Water Bodies (No.2017ZX07603-003)。
文摘The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surface area of 133.7 m^(2)/g.NAPT and DAPT were incorporated into the silicone rubber to obtain the composite NAPTSR and DAPT-SR by mechanical blending method,respectively.After thermal oxidative ageing at 300℃ for 0.5 h,temperature for the 5%weight loss increased greatly from 385℃ of the neat silicone rubber to 396-399℃ with addition of NAPT and DAPT.NAPT and DAPT enhanced the interaction between the filler nanoparticles and rubber matrix thus inhibited the nanoparticle agglomeration.The conservation rate of the side methyl group in NAPT-SR and DAPT-SR was greatly improved after ageing.Therefore,the thermal oxidative degradation and ageing performance of the silicone rubber composites was significantly reinforced.Moreover,DAPT could greatly restrain the growth of nanoparticles after ageing.Therefore,DAPT-SR showed the better retention of tensile strength(40.6%),elongation at break(34.9%)and tear strength(30.1%)compared with the corresponding mechanical properties of the neat silicone rubber(10.6%,7.4%,and 5.0%)after ageing.
基金financially supported by the Education Department of Liaoning Province(No.2009A421)
文摘A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.
基金The project supported by the Key Project of Science and Technology from the Ministry of Education China (No. 00250) the project of KJCXGC-01 of Northwest Normal University, China
文摘Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.
基金Funded by the National Natural Science Foundation of China(52075391)the China Postdoctoral Science Foundation(2019M660596)。
文摘In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),and differential scanning calorimetry(DSC)was established,respectively,to calculate the activation energy of lubricant thermal-oxidative reaction.The thermal analyses of TG and DTA were employed to determine the thermal decomposition properties of ester oils trimethylolpropane trioleate(TMPTO)with butyl-octyl-diphenylamine/octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate/amine-phenol combination antioxidant.The activation energy of the lubricating oil adding antioxidant is increased relative to the TMPTO base oil,and the order of activation energy are Ec(93.732 kJ·mol^(-1))>Ed(88.71 kJ·mol^(-1))>Eb(58.41 kJ·mol^(-1))>Ea(46.32 kJ·mol^(-1)).The experimental results show that octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate in TMPTO has favorable resistance to thermal oxidation and decomposition.The thermal analysis method of DSC accurately reflects the heat exchange of lubricant thermal-oxidative reaction.The order of activation energy is calculated to ED(144.385 kJ·mol^(-1))>EC(110.05 kJ·mol^(-1))>EB(97.187 kJ·mol^(-1))>EA(66.02 kJ·mol^(-1)).It is illustrated that the amine-phenol combination antioxidant has the best thermal oxidation resistance,which is the same as what the oxidation onset temperature effected.
文摘Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradation of azo dyes was developed. Acid orange 7 (AO7) was selected as the model for azo dye and the high efficient degradation was achieved in hemin/H2O2 system at pH 11.0. Degradation could be described by a pseudo-first-order kinetic model. The order of dependence on H2O2 concentration was significantly larger than that of hemin. Coexisting anions sulphate and chloride had little effect on the degradation, but reductive sulphite dramatically inhibited the degradation. The protic solvent 2-prophanol obviously promoted the degradation. Azo chromogenic group was destroyed quickly and some smaller intermediates formed. Active species oxoferryl porphyrin p-cation radical +PFeIV=O generated from heterolytic cleavage of O-O in H2O2 catalyzed by hemin play the main roles in degradation and reaction pathways were proposed.
基金the Alexander von Humboldt Foundation of Germany, and partly by the CAS and the NNSF of China.
文摘2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorination means and might have a future in the oxidative removal of chlorinated phenols. In addition, a stepwise degradation of TCP, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol via substitution, is proposed through a detailed analysis of gas chromatography/mass spectrometry.
文摘Treatment of biliverdin IXα dimethyl ester(2)with silver nitrate in alkaline solution gave two violin-like tripyrrione carbaldehydes,one de- graded at C15-C16,other at C4-C5.Biliverdin IXα(1),bilirubin IXα(3)and its dimethyl ester(4)gave the same results.
基金supported by Bualuang ASEAN Chair Professor Fund.Also,the financial support provided by the Natural Science&Engineering Research Council of Canada(NSERC)and the SaskPower Clean Energy Research Chair programme is gratefully acknowledged.
文摘This work investigates the effect of chemical structural positioning of different functional groups in 29 amines covering primary,secondary and tertiary alkanolamines as well as multi-alkylamines and cyclic amines on both amine degradation and ammonia(NH_(3))emissions during post-combustion amine-based carbon dioxide capture.The results helped to elucidate possible relation-ships between degradation and emissions as related to the chemical structure of the amine.The results showed that longer alkyl chain lengths in multi-alkylamines caused a more drastic decrease in both degradation and NH_(3) emissions followed by secondary alkanolamines.The decrease in those activities for primary and tertiary alkanolamines as well as cyclic amines was low and more so for NH_(3) emissions.In contrast,the increase in hydroxyl groups in secondary alkanolamines caused a drastic increase in degrad-ation and NH_(3) emissions.On the other hand,having more hydroxyl groups in sterically hindered primary and tertiary alkanolamines caused a more drastic decrease in degradation and a smaller decrease in NH_(3) emissions due to the steric hindrance within their structure.An increase in the number of amino groups in an amine caused an increase in both degradation and NH_(3) emission rates because these provided the reactive sites for the formation of free radicals.This effect was not as large in alkyl-cyclic amines as in multi-alkylamines due to the ability of the former to resist oxidative degradation.Furthermore,branched alkyl groups between amino and hydroxyl groups more drastically increased both the degradation and NH_(3) emission activities than branched alkyl groups located at the nitrogen atom.
基金This work was supported by the National Natural Science Foundation of China (No. 21303136).
文摘Enhancement of Fe3O4/Au nanoparticles (Fe3O4/Au NPs) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4/Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst-activated decomposition of H2O2 to ,OH radical, which was one of the strong oxidizing species. Besides, Fe3O4/Au nanoparticles have exhibited satisfying recycle performance for potential industrial application.
基金supported by the National Natural Science Foundation of China (Nos. 21277048 and 21505046)the China Postdoctoral Science Foundation (No. 2016 M590336)+1 种基金the "Chenguang Program" funded by Shanghai Education Development FoundationShanghai Municipal Education Commission (No. 15CG21)
文摘In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimize the oxidation of basic dye(Methylene Blue(MB)),including the molar ratio of MnO2to chloroauric acid(HAu Cl4),the p H of the solution and the effect of initial material.Under the optimal condition,the highest degradation efficiency for MB achieved to 98.9%within 60 min,which was obviously better than commercial MnO2powders(4.3%)and MnO2nanosheets(74.2%).The enhanced oxidative degradation might attribute to the in-situ generation of ultra-small and highly-dispersed Au-NPs which enlarged the synergistic effect and/or interfacial effect between MnO2nanosheets and Au-NPs and facilitated the uptake of electrons by MnO2from MB during the oxidation,thus validating the application of MnO2/Au-NPs nanocomposite for direct removal of organic dyes from wastewater in a simple and convenient fashion.
基金financially supported by the National Natural Science Foundation of China(21875265,22293015,22121002)。
文摘Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
基金financially supported by National Natural Science Foundation of China(22008073,22078100,21878091)Shanghai Sailing Program(20YF1410600)。
文摘Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins.
文摘The factors and mechanisms of oxidative degradation of three organophosphorus pesticides (dichlorvos, methamidophos and phoxim) were studied with sodium percarbonate (SPC) as a solid oxidant. The result showed that SPC has highly activity in degrading these organophosphous pesticides. The most efficient degradation of pesticides occurred under basic conditions and the degradation rates increased with time extension and high temperature. The degradation of organophosphorus pesticides was expected to get even better results at lower initial concentration. Furthermore, we analyzed the intermediate products by NMP, spectrometry. On the basis of the analytical result, the oxidative degradation mechanism was proposed for each organophosphous pesticide. It is significant to understand the environment chemistry of organophosphorus pesticides in environmental system.
基金the Invention Foundation of Science and Technology,Gansu Agriculture University of China(No.GAU-CX0527)the Young and Middle-aged Foundation of Science and Technology,Gansu Province of China(No.3YS061-A25-020)
文摘The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.
基金supported by the Youth Innovation Promotion Association,CAS(No.2018456)Major Program of Lanzhou Institute of Chemical Physics,CAS(No.ZYFZFX-10)State Key Laboratory Program of the Lanzhou Institute of Chemical Physics,CAS(No.CHGZ-202211).
文摘In Fenton-like oxidation,the catalyst directly influences the reaction mechanism for the degradation of pollutants from water.Here,a α-MnO_(2)catalyst(OAm-1)was synthesized via a self-assembly method with the assistance of a surfactant.OAm-1 possessed a large specific surface area of_(2)21 m2/g,abundant mesoporous structures and a large proportion of Mn(III).Further characterization exhibited that OAm-1 had abundant oxygen vacancies and excellent reducibility and conductivity.The adsorption and catalytic ability of OAm-1 were studied in the degradation of oxytetracycline(OTC)via the activation of hydrogen peroxide(H_(2)O_(2)).Through the radical quenching experiments,electron resonance spectroscopy(EPR),X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR)analysis,Mn(III)of OAm-1 was proved to be the active sites for the chemisorption of OTC.Systematic electrochemical ex-periments and analysis have shown that a process of electron transfer mediated by OAm-1 occurred be-tween the pollutant and H_(2)O_(2)during a Fenton-like reaction.This work experimentally verifies the elec-tron transfer process dominated nonradical mechanism overα-MnO_(2),which is helpful for understanding the catalytic mechanism of the Fenton-like oxidation.
基金funded by the UK Research Council EPSRC EP/009050/1。
文摘High-temperature proton exchange membrane fuel cells(HT-PEMFCs)are pursued worldwide as efficient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid(PA)-based proton exchange membrane(PEM)of HT-PEMFCs.This review focuses on recent advances in the limitations of acid-based PEM(acid leaching,oxidative degradation,and mechanical degradation)and the approaches mitigating the membrane degradation.Preparing multilayer or polymers with continuous network,adding hygroscopic inorganic materials,and introducing PA doping sites or covalent interactions with PA can effectively reduce acid leaching.Membrane oxidative degradation can be alleviated by synthesizing crosslinked or branched polymers,and introducing antioxidative groups or highly oxidative stable materials.Crosslinking to get a compact structure,blending with stable polymers and inorganic materials,preparing polymer with high molecular weight,and fabricating the polymer with PA doping sites away from backbones,are recommended to improve the membrane mechanical strength.Also,by comparing the running hours and decay rate,three current approaches,1.crosslinking via thermally curing or polymeric crosslinker,2.incorporating hygroscopic inorganic materials,3.increasing membrane layers or introducing strong basic groups and electron-withdrawing groups,have been concluded to be promising approaches to improve the durability of HT-PEMFCs.The overall aim of this review is to explore the existing degradation challenges and opportunities to serve as a solid basis for the deployment in the fuel cell market.
基金supported by the National Natural Science Foundation of China(51678511,51308484)the Natural Science Foundation of Hunan Province(13JJ4049)+3 种基金the Education Department Fund of Hunan Province(14C1094)the Open Fund of Key Laboratory of Mineralogy and Metallogeny in Chinese Academy of Sciences(KLMM20150104)the Major Talent Training Program of Xiangtan University(16PYZ09)the Specialized Research Fund for the Doctoral Program of Xiangtan University(12QDZ18)~~
文摘A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐programmed reduction by H2,cyclic voltammetry,and temperature‐programmed desorption by O2.The results showed that Mo6+diffused into the Cu‐Fe‐O crystal lattice and then formed a new crystalline phase of CuMoO4.The Mo‐Cu‐Fe‐O catalyst had redox properties,and its surface contained active sites for oxygen adsorption.In addition,the catalytic activity of the Mo‐Cu‐Fe‐O composite was evaluated by the degradation of Cationic Red GTL,Crystal Violet,and Acid Red in catalytic wet air oxidation(CWAO)at ambient temperature and pressure.The Mo‐Cu‐Fe‐O catalyst showed excellent activity at basic conditions for the degradation of Cationic Red GTL.High removal efficiencies of91.5%and92.8%were achieved for Cationic Red GTL and Crystal Violet,respectively,in wastewater,and the efficiency remained high after seven cycles.However,almost no degradation of Acid Red occurred in the CWAO process.Furthermore,hydroxyl radicals were formed in the CWAO process,which induced the decomposition of the two cationic dyes in wastewater,and the toxicity of their effluents was decreased after degradation.The results indicate that the Mo‐Cu‐Fe‐O composite shows excellent catalytic activity for the treatment of wastewater contaminated with cationic dyes.
基金Supported by the Natural Science Foundation of Ningbo City,Zhejiang Province(2013A610188)the Self-designed Subject of "Modern Microorganism Technology and Application",the Priority Discipline of Zhejiang Province,China(ZS2013011)
文摘The characteristics of water quality had significant effects on the oxidative degradation of O_3/H_2O_2 system.In this study,iron supported on activated carbon catalyst was prepared firstly,and then the treatment of landfill leachate by O_3/H_2O_2/catalyst system was analyzed,especially the roles of H_2O_2 in the oxidation of landfill leachate by O_3/H_2O_2 system.The results showed that at room temperature,when the dosage of the catalyst was 1.0g,the removal rate of COD from the landfill leachate reached 79.8% after 50 ml of the landfill leachate(pH=3)was oxidized by O_3(its flow rate was 5g/h)for 50 min.If 0.3ml of H_2O_2 was added to the landfill leachate,the removal rate of COD increased from 79.8%to 88.7%.It showed that the landfill leachate with the characteristics of complex composition and difficult biodegradation could be effectively degraded by the O_3/H_2O_2 system.
基金Supported by the National Natural Science Foundation of China(21276013,21676008)Specialized Research Fund for the Doctoral Program of Higher Education of China(20130010110001)
文摘The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.