The glass sample based on the composition of 45PbF_2-45GeO_2-10WO_3 co-doped with Yb^(3+)/Er^(3+) was prepared by the fusion method in two steps: melted at 950 ℃ for 20~25 min then annealed at 380 ℃ for 4 h. Throug...The glass sample based on the composition of 45PbF_2-45GeO_2-10WO_3 co-doped with Yb^(3+)/Er^(3+) was prepared by the fusion method in two steps: melted at 950 ℃ for 20~25 min then annealed at 380 ℃ for 4 h. Through the V-prism it is found that the refractive index of host glass and the sample are 1.517 and 1.65 respectively. The transmittance was observed by using the ultraviolet-visible-infrared spectrometer in the wavelength range from 0.35 to 2.5μm. The transmittance of the host glass is beyond 73%. That of the sample is beyond 50% and there are characteristic absorption peaks of rare-earth ions. The emission spectrum was measured by using the Hitachi F-4500 fluorescent spectrometer pumped by 980 nm semiconductor laser. There are a strong emission peak at 530 nm and a weak peak at 650 nm.展开更多
Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540...Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.展开更多
The physical and luminescent properties of Sm^(3+)-doped oxide and oxy-fluoride phosphate glasses were investigated. The glass samples with chemical composition of 69 P_2 O_5-10 BaO-10 ZnO-10 Gd_2 O_3-1 Sm_2 O_3 and 6...The physical and luminescent properties of Sm^(3+)-doped oxide and oxy-fluoride phosphate glasses were investigated. The glass samples with chemical composition of 69 P_2 O_5-10 BaO-10 ZnO-10 Gd_2 O_3-1 Sm_2 O_3 and 69 P_2 O_5-10 BaO-10 ZnO-10 GdF_3-1 Sm_2 O_3 were prepared by conventional melt quenching technique. The prepared glass samples were characterized with density, molar volume, refractive index,FTIR, UV-Vis-NIR, photo luminesce nce, radio luminescence, decay time profile and CIE diagram. The density and refractive index of the oxide glass have higher values as compared to the oxy-fluoride glass.The FTIR spectra show the reduction of O-H group in oxy-fluoride glass. The characteristic peaks of Sm^(3+)are observed at 360,372,402,438,419,473,944,1077,1227,1373,1474,1529 and 1585 nm in UV-VIS-NIR spectra. These peaks are related respectively to the transitions from ground state ~6 H_(5/2) to ~4 D_(3/2), ~6 P_(7/2),6 P3/2, ~4 I_(11/2), ~6 F_(11/2), ~6 F_(9/2), ~6 F_(7/2),~6 F_(5/2),~6 F_(3/2), ~6 H_(15/2) and ~6 F_(1/2) excited states. From photoluminescence and radio-luminesce nce it is observed that the oxy-fluoride glass samples show better emission intensity than the oxide glass. The Judd-Ofelt theory(J-0 theory) was used to find J-O intensity Ω_λ(λ = 2,4 and 6)parameters and radiative properties such as transition probability, stimulated emission cross section and branching ratios for titled glasses. The trend observed in the J-O parameters is Ω_4 >Ω_2 >Ω_6. The transition probability,emission cross section and branching ratio have the highest values for the ~4 G_(5/2)→~6 H_(7/2)transition. The CIE coordinates of the prepared glass samples are positioned in the orange region and the CCT value is 3776.105 for oxide and oxyfluoride glass. The oxy-fluoride glass has shorter decay time as compared to the oxide glass and it is recorded to be 1.62 and 1.32 ms for oxide and oxy-fluoride respectively. According to the results obtained in this work, it is obvious that these glass samples can be good candidate materials for producing cool orange light.展开更多
文摘The glass sample based on the composition of 45PbF_2-45GeO_2-10WO_3 co-doped with Yb^(3+)/Er^(3+) was prepared by the fusion method in two steps: melted at 950 ℃ for 20~25 min then annealed at 380 ℃ for 4 h. Through the V-prism it is found that the refractive index of host glass and the sample are 1.517 and 1.65 respectively. The transmittance was observed by using the ultraviolet-visible-infrared spectrometer in the wavelength range from 0.35 to 2.5μm. The transmittance of the host glass is beyond 73%. That of the sample is beyond 50% and there are characteristic absorption peaks of rare-earth ions. The emission spectrum was measured by using the Hitachi F-4500 fluorescent spectrometer pumped by 980 nm semiconductor laser. There are a strong emission peak at 530 nm and a weak peak at 650 nm.
文摘Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.
基金supported by the Nakhon Pathom Rajabhat University Thailand(PD1_2017)and National Council of Research Thailand(NRCT)
文摘The physical and luminescent properties of Sm^(3+)-doped oxide and oxy-fluoride phosphate glasses were investigated. The glass samples with chemical composition of 69 P_2 O_5-10 BaO-10 ZnO-10 Gd_2 O_3-1 Sm_2 O_3 and 69 P_2 O_5-10 BaO-10 ZnO-10 GdF_3-1 Sm_2 O_3 were prepared by conventional melt quenching technique. The prepared glass samples were characterized with density, molar volume, refractive index,FTIR, UV-Vis-NIR, photo luminesce nce, radio luminescence, decay time profile and CIE diagram. The density and refractive index of the oxide glass have higher values as compared to the oxy-fluoride glass.The FTIR spectra show the reduction of O-H group in oxy-fluoride glass. The characteristic peaks of Sm^(3+)are observed at 360,372,402,438,419,473,944,1077,1227,1373,1474,1529 and 1585 nm in UV-VIS-NIR spectra. These peaks are related respectively to the transitions from ground state ~6 H_(5/2) to ~4 D_(3/2), ~6 P_(7/2),6 P3/2, ~4 I_(11/2), ~6 F_(11/2), ~6 F_(9/2), ~6 F_(7/2),~6 F_(5/2),~6 F_(3/2), ~6 H_(15/2) and ~6 F_(1/2) excited states. From photoluminescence and radio-luminesce nce it is observed that the oxy-fluoride glass samples show better emission intensity than the oxide glass. The Judd-Ofelt theory(J-0 theory) was used to find J-O intensity Ω_λ(λ = 2,4 and 6)parameters and radiative properties such as transition probability, stimulated emission cross section and branching ratios for titled glasses. The trend observed in the J-O parameters is Ω_4 >Ω_2 >Ω_6. The transition probability,emission cross section and branching ratio have the highest values for the ~4 G_(5/2)→~6 H_(7/2)transition. The CIE coordinates of the prepared glass samples are positioned in the orange region and the CCT value is 3776.105 for oxide and oxyfluoride glass. The oxy-fluoride glass has shorter decay time as compared to the oxide glass and it is recorded to be 1.62 and 1.32 ms for oxide and oxy-fluoride respectively. According to the results obtained in this work, it is obvious that these glass samples can be good candidate materials for producing cool orange light.