A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the so...A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the solid state reaction method.The crystal phase and morphology of LTF-x were characterized by XRD and SEM respectively.Catalytic pyrolysis performance of LTF-x was performed by TG-DTG and the distribution patterns of gaseous,liquid and solid products from BL was investigated using a fixed-bed micro-reactor.The optimal reaction conditions were determined:the pyrolysis temperature was 600℃,the mass ratio of mBL:mLTF-0.2 was 3:1,the veloeity of earrier gas was 100 ml·min-1.The gaseous produets were mainly eomposed of CO2,CO,CH4 and CnHm(n=2-4,m=2 n+2 or m=2 n),The main aryl oxygen-containing compounds in liquid products were phenolics,guaiacols,syringols and phenylates,the rest were benzenes,furans,esters and carboxylic acid.The total contents of aryl oxygencontaining compounds were from 62% up to more than 72% under the action of the perovskite.Moreover,the LTF-0.2 sample had nice regenerability.展开更多
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t...New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.展开更多
The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) i...The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.展开更多
Stable adsorption and direct electrochemistry of glucose oxidase (COx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubcs (MWNTs) instead of as-received MWNTs, demonstrating the critical roles ...Stable adsorption and direct electrochemistry of glucose oxidase (COx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubcs (MWNTs) instead of as-received MWNTs, demonstrating the critical roles of oxygen-containing groups in stable adsorption and direct electrochemistry of GOx on carbon nanotubcs (CNTs).展开更多
Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced dist...Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced distance-based atom-type indices DAI. The useful application of the novel DAI indices has been demonstrated by developing accurate predictive equations for gas chromatographic retention indices. The statistical results of the multiple linear regression for the final model are τ=0.9973 and s=8.23. Furthermore, an external test set of 10 oxo-containing compounds can be accurately predicted with the final equation giving the following statistical results: τpred:0.9966 and spred=8.56.展开更多
Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report highe...Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide(GO)as the anode material for potassium ion batteries(PIBs),compared to the raw graphite.The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K^(+)storage mechanism,assigning the capacity enhancement to be mainly correlated with reversible K^(+)adsorption/desorption at the newly introduced oxygen sites.It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement.Based on in situ Fourier transform infrared(FT-IR)spectra and in situ electrochemical impedance spectroscopy(EIS),it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase(SEI),leading to the formation of highly conductive,intact and robust SEI.Through the systematic investigations,we hereby uncover the K^(+)storage mechanism of GO-based PIB,and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.展开更多
This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly desc...This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.展开更多
The synthetic parameters were changed to explore the formation mechanism of the oxygen-containing groups on the surfaces of the hypercrosslinked polymers. The FT-IR spectra and the Boehm titration were used to charact...The synthetic parameters were changed to explore the formation mechanism of the oxygen-containing groups on the surfaces of the hypercrosslinked polymers. The FT-IR spectra and the Boehm titration were used to characterize the surface chemistry of the synthesized polymers. The GC-MS was applied to analyze nitrobenzene which was the solvent in the reaction. The functionalities such as carbonyls and phenols were formed through the oxidation of residual chloromethyl groups by nitrobenzene and the carboxylic groups were formed through further oxidation by oxygen. The nitrobenzene was deoxidized to nitrosobenzene and further to aniline.展开更多
To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) sampl...To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) samples prepared by the sol-gel method(SG) and the solid-state reaction method(SS)were characterized.The catalytic action on BL pyrolysis was performed by the test of TG-DTG and the evaluation of the fixed bed micro-reactor,the components and contents of the products were determined.The results show that LTF samples have cubic perovskite phase,LTF prepared by SG(LTF-SG) is porous with larger specific surface area than LTF prepared by SS(LTF-SS).During the pyrolysis of BL,the addition of LTF lowers the pyrolysis temperature and the activation energy,the contents of CO2 and CO in gaseous products reduce by 4.6%-8.0% and 30.7%-34.3%,respectively,the total content of aryl oxygencontaining compounds(including phenolics,guaiacols,syringols and phenylates) in liquid products increases from 62 wt% to more than 72 wt%,and LTF-SG shows better catalytic performance.LTF samples have nice phase and catalytic stabilities for BL pyrolysis after five successive redox cycles.展开更多
Renewable-energy-powered electrochemical CO or CO_(2)reduction reactions(CO_(2)RR)provide one of the most promising strategies to upgrade CO_(2)to valuable products.In the past decade,the existence and the mechanistic...Renewable-energy-powered electrochemical CO or CO_(2)reduction reactions(CO_(2)RR)provide one of the most promising strategies to upgrade CO_(2)to valuable products.In the past decade,the existence and the mechanistic role of oxygen-containing species,such as(sub)surface oxide,hydroxide and oxyhydroxide species,at the electrode–electrolyte interface under reductive conditions have emerged as a topic of acute discussion within the CO_(2)RR field.Oxide-derived Cu attracted the most attention,while other surfaces,including Au,Ag and Sn,were also widely investigated.This review identifies likely causes for contrasting results and views in the literature,summarizes possible oxygen sources for the interfacial oxygen-containing species at the CO_(2)RR conditions,and discusses potential roles these species could play in affecting the rate and product distribution.Finally,perspectives on future efforts to reveal the identity and role of oxygen-containing species in the CO_(2)RR are presented.展开更多
In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene she...In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene.The PG possessed an extremely high specific surface area of 2184 m^2/g,the size of^5 μm and layer numbers of 3-8.Additionally,PG contained micropores and mesopores simultaneously,with an average pore diameter of approximately 3 nm.The effects of acid,alkali,and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy.First,in an acidic solution,oxygen-containing functional groups(hydroxyls,carboxyl,and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide.Second,under the synergistic effects of alkali and ultrasound treatment,PG was obtained due to the loss of carboxyl and epoxide groups.A new route for preparing PG was provided by the proposed method.展开更多
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe...Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.展开更多
Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were f...Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were further modified by potassium ferrate to finally prepare high-performance carbon for VOCs adsorption.At the same time,the samples before and after modification were systematically studied through characterization techniques such as SEM,Raman spectrometry,FT-IR,XPS,and dynamic/static adsorption.The results showed that the specific surface area and pore volume of the RAC after modification by the strong oxidant potassium ferrate increased by 1.4 times;the degree of defects was enhanced and the content of oxygen-containing functional groups on the surface increased significantly.Among them,the sample modified with potassium ferrate for 24 h had the best dynamic toluene adsorption performance(375.5 mg/g),and the dynamic adsorption capacity was twice that of the original sample(192.8 mg/g).The static adsorption test found that the maximum adsorption capacity of RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h was 796 mg/g,which indicated that the potassium ferrate modification treatment could significantly increase the VOCs adsorption performance of RAC.In addition,through consecutive toluene adsorption-desorption cycle tests,it was found that the RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h sample still retained 91%of adsorption activity after the fifth regeneration cycle.This indicates that RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h has good cycle stability and great application value for the efficient purification of industrial waste VOCs gas.展开更多
The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compou...The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compound is one of the most efficient methods to upgrade coal tar.In this study,density functional theory calculations are employed to assess and analyze in detail the hydrodeoxygenation of dibenzofuran,as a model compound of coal tar,on the Ni(111)surface.The obtained results indicate that dibenzofuran can be firstly hydrogenated to tetra hy d rod i be nzofura n and hexahydfodibenzofufan.The five-membered-ring opening reaction of tetrahydrodibenzofuran is more straightforward than that of hexahydrodibenzofuran(Ea=0.71 eV vs.1.66 eV).Then,both pathways generate an intermediate 2-cyclohexylphenoxy compound.One part of 2-cyclohexylphenoxy is hydrogenated to 2-cyclohexylphenol and consecutively hydrogenated to cyclohexylcyclohexanol,and another part is directly hydrogenated to cyclohexylcyclohexanone.The hydrogenated intermediates of2-cyclohexylphenol have higher deoxygenation barriers than 2-cyclohexylphenol and cyclohexylcy clohexanol.During the hydrogenation process of cyclohexylcyclohexanone to cyclohexylcyclohexanol,the intermediate 26,formed by adding H to O atom of cyclohexylcyclohexanone,exhibits the lowest deoxygenation barrier of 1.08 eV.High hydrogen coverage may promote the hydrogenation of tetrahydrodibenzofuran,hexahydrodibenzofuran,and intermediate 26 to generate dodecahydrodibenzofuran and cyclohexylcyclohexanol.This dibenzofuran hydrodeoxygenation reaction mechanism corroborates well with previous experimental results and provides a theoretical basis for further optimization of the design of nickel-based catalysts.展开更多
The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds ...The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil,and their catalytic cracking performance was investigated.There are nine classes of basic nitrogen compounds(BNCs)and eleven classes of non-basic heteroatomic compounds(NBHCs)in the different distillates.The dominant BNCs are mainly basic N1 class species.The dominant NBHCs are mainly acidic O2 and O1 class species in the300-350℃,350-400℃,and 400-450℃distillates,while the neutral N1,N1 O1 and N2 compounds become relatively abundant in the>450℃fraction.The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation(different carbon number)but not by aromaticity(different double-bond equivalent values).The basic N1 O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity.After the catalytic cracking of Fushun shale oil,the classes of BNCs in the liquid products remain unchanged,while the classes and relative abundances of NBHCs vary significantly.展开更多
Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the d...Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.展开更多
Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmissi...Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.展开更多
The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers. Surface chemistry and functionality of the polymers are characterized by Four...The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers. Surface chemistry and functionality of the polymers are characterized by Fourier-transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (NMR) and contact angle. The results showed that the ether groups were from chloromethylated reaction, and the alcohol groups arose from partial hydrolysis of chloromethyl groups during the post-crosslinking reaction, and the carbonyl functionality was formed by further oxidation of the alcohol groups. Catalyst and solvent used in the postcrosslinking reaction would greatly influence the surface chemistry of the polymer.展开更多
An interfacially active cobalt complex,cobalt dodecylbenzenesulfonate,was synthesized.Elemental analysis,atomic absorption spectroscopy,Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis,and s...An interfacially active cobalt complex,cobalt dodecylbenzenesulfonate,was synthesized.Elemental analysis,atomic absorption spectroscopy,Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis,and surface/interfacial tension determination were performed to investigate the properties of the catalyst.Results showed that the synthesized catalyst showed active interfacial behavior,decreasing the surface tension and interfacial tension between heavy oil and liquid phase to below 30 and 1.5 mN/m,respectively.The catalyst was not thermally degraded at a temperature of 400 ℃,indicating its high thermal stability.Catalytic performance of the catalyst was evaluated by carrying out aquathermolysis.The viscosity determination showed that the viscosity of the heavy oil decreased by 38%.The average molecular weight,group compositions,and average molecular structure of various samples were analyzed using elemental analysis,FT-IR,electrospray ionization Fourier transform ion cyclotron resonance(ESI FT-ICR MS),and ~1H nuclear magnetic resonance.Results indicated that the catalyst could attack the sulfur- and O_2-type heteroatomic compounds in asphaltene and resin,especially the compounds with aromatic structure,leading to a decrease in the molecular weight and then the reduction in the viscosity of heavy oil.Therefore,the synthesized catalyst might find an application in catalytic aquathermolysis of heavy oil,especially for the high-aromaticity heavy oil with high oxygen content.展开更多
基金Supported by the National Natural Science Foundation of China,China(51674089)Heilongjiang Provincial Science Fund for Distinguished Youth Scholar(JC2018002)+2 种基金Heilongjiang Postdoctoral Scientific Research Development Fund of China(LBH-Q16037)the Youth Fund of Northeast Petroleum University(2018QNL-17)Postgraduate Innovative Research Projects of Northeast Petroleum University(YJSCX2017-014NEPU)
文摘A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the solid state reaction method.The crystal phase and morphology of LTF-x were characterized by XRD and SEM respectively.Catalytic pyrolysis performance of LTF-x was performed by TG-DTG and the distribution patterns of gaseous,liquid and solid products from BL was investigated using a fixed-bed micro-reactor.The optimal reaction conditions were determined:the pyrolysis temperature was 600℃,the mass ratio of mBL:mLTF-0.2 was 3:1,the veloeity of earrier gas was 100 ml·min-1.The gaseous produets were mainly eomposed of CO2,CO,CH4 and CnHm(n=2-4,m=2 n+2 or m=2 n),The main aryl oxygen-containing compounds in liquid products were phenolics,guaiacols,syringols and phenylates,the rest were benzenes,furans,esters and carboxylic acid.The total contents of aryl oxygencontaining compounds were from 62% up to more than 72% under the action of the perovskite.Moreover,the LTF-0.2 sample had nice regenerability.
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.
基金Supported by the Fundamental Research Funds for the Central Universities(TD2013-2,2012LYB33)the National Natural Science Foundation of China(51278053,21373032)grant-in-aid from Kochi University of Technology and China Scholarship Council
文摘The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.
基金This research is supported by the National Natural Science Foundation of China(Nos.30370397 and 60571042).
文摘Stable adsorption and direct electrochemistry of glucose oxidase (COx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubcs (MWNTs) instead of as-received MWNTs, demonstrating the critical roles of oxygen-containing groups in stable adsorption and direct electrochemistry of GOx on carbon nanotubcs (CNTs).
文摘Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced distance-based atom-type indices DAI. The useful application of the novel DAI indices has been demonstrated by developing accurate predictive equations for gas chromatographic retention indices. The statistical results of the multiple linear regression for the final model are τ=0.9973 and s=8.23. Furthermore, an external test set of 10 oxo-containing compounds can be accurately predicted with the final equation giving the following statistical results: τpred:0.9966 and spred=8.56.
基金financially supported by the National Natural Science Foundation of China(51802091,51902102,22075074)Outstanding Young Scientists Research Funds from Hunan Province(2020JJ2004)+2 种基金Major Science and Technology Program of Hunan Province(2020WK2013)Creative Research Funds from Hunan Province(2018RS3046)Natural Science Foundation of Hunan Province(2020JJ5035)。
文摘Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide(GO)as the anode material for potassium ion batteries(PIBs),compared to the raw graphite.The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K^(+)storage mechanism,assigning the capacity enhancement to be mainly correlated with reversible K^(+)adsorption/desorption at the newly introduced oxygen sites.It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement.Based on in situ Fourier transform infrared(FT-IR)spectra and in situ electrochemical impedance spectroscopy(EIS),it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase(SEI),leading to the formation of highly conductive,intact and robust SEI.Through the systematic investigations,we hereby uncover the K^(+)storage mechanism of GO-based PIB,and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.
基金National Natural Science Foundation of China (No. 20336020) and Science Foundation of Guangdong Province of China (2002C32103).
文摘This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.
文摘The synthetic parameters were changed to explore the formation mechanism of the oxygen-containing groups on the surfaces of the hypercrosslinked polymers. The FT-IR spectra and the Boehm titration were used to characterize the surface chemistry of the synthesized polymers. The GC-MS was applied to analyze nitrobenzene which was the solvent in the reaction. The functionalities such as carbonyls and phenols were formed through the oxidation of residual chloromethyl groups by nitrobenzene and the carboxylic groups were formed through further oxidation by oxygen. The nitrobenzene was deoxidized to nitrosobenzene and further to aniline.
基金Project supported by National Natural Science Foundation of China(51674089)Heilongjiang Provincial Science Fund for Distinguished Youth Scholar(JC2018002)+2 种基金Postdoctoral Scientific Research Development Fund of Heilongjiang Province(LBH-Q16037)Postgraduate Innovative Research Project of Northeast Petroleum University(YJSCX2017-014NEPU)Youth Fund of Northeast Petroleum University(2018QNL-17)
文摘To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) samples prepared by the sol-gel method(SG) and the solid-state reaction method(SS)were characterized.The catalytic action on BL pyrolysis was performed by the test of TG-DTG and the evaluation of the fixed bed micro-reactor,the components and contents of the products were determined.The results show that LTF samples have cubic perovskite phase,LTF prepared by SG(LTF-SG) is porous with larger specific surface area than LTF prepared by SS(LTF-SS).During the pyrolysis of BL,the addition of LTF lowers the pyrolysis temperature and the activation energy,the contents of CO2 and CO in gaseous products reduce by 4.6%-8.0% and 30.7%-34.3%,respectively,the total content of aryl oxygencontaining compounds(including phenolics,guaiacols,syringols and phenylates) in liquid products increases from 62 wt% to more than 72 wt%,and LTF-SG shows better catalytic performance.LTF samples have nice phase and catalytic stabilities for BL pyrolysis after five successive redox cycles.
基金supported by Beijing National Laboratory for Molecular Sciences and the National Natural Science Foundation of China(21872079)。
文摘Renewable-energy-powered electrochemical CO or CO_(2)reduction reactions(CO_(2)RR)provide one of the most promising strategies to upgrade CO_(2)to valuable products.In the past decade,the existence and the mechanistic role of oxygen-containing species,such as(sub)surface oxide,hydroxide and oxyhydroxide species,at the electrode–electrolyte interface under reductive conditions have emerged as a topic of acute discussion within the CO_(2)RR field.Oxide-derived Cu attracted the most attention,while other surfaces,including Au,Ag and Sn,were also widely investigated.This review identifies likely causes for contrasting results and views in the literature,summarizes possible oxygen sources for the interfacial oxygen-containing species at the CO_(2)RR conditions,and discusses potential roles these species could play in affecting the rate and product distribution.Finally,perspectives on future efforts to reveal the identity and role of oxygen-containing species in the CO_(2)RR are presented.
基金financially supported by the National Natural Science Foundation of China (Nos.11765010,51704136)the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (No.2016FB087)the Freely Exploring Fund for Academicians in Yunnan Province (No.2018HA006)
文摘In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene.The PG possessed an extremely high specific surface area of 2184 m^2/g,the size of^5 μm and layer numbers of 3-8.Additionally,PG contained micropores and mesopores simultaneously,with an average pore diameter of approximately 3 nm.The effects of acid,alkali,and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy.First,in an acidic solution,oxygen-containing functional groups(hydroxyls,carboxyl,and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide.Second,under the synergistic effects of alkali and ultrasound treatment,PG was obtained due to the loss of carboxyl and epoxide groups.A new route for preparing PG was provided by the proposed method.
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金supported by the German Federal Ministry of Education and Research (BMBF) for the CarboKat Project (03X0204D) within the scope of the Inno.CNT Alliance
文摘Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.
基金financialy supported by the National Natural Science Foundation of China (No.21936005,52070114,21876093)the Postdoctoral Science Program of China (No.2019M660061)
文摘Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were further modified by potassium ferrate to finally prepare high-performance carbon for VOCs adsorption.At the same time,the samples before and after modification were systematically studied through characterization techniques such as SEM,Raman spectrometry,FT-IR,XPS,and dynamic/static adsorption.The results showed that the specific surface area and pore volume of the RAC after modification by the strong oxidant potassium ferrate increased by 1.4 times;the degree of defects was enhanced and the content of oxygen-containing functional groups on the surface increased significantly.Among them,the sample modified with potassium ferrate for 24 h had the best dynamic toluene adsorption performance(375.5 mg/g),and the dynamic adsorption capacity was twice that of the original sample(192.8 mg/g).The static adsorption test found that the maximum adsorption capacity of RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h was 796 mg/g,which indicated that the potassium ferrate modification treatment could significantly increase the VOCs adsorption performance of RAC.In addition,through consecutive toluene adsorption-desorption cycle tests,it was found that the RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h sample still retained 91%of adsorption activity after the fifth regeneration cycle.This indicates that RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h has good cycle stability and great application value for the efficient purification of industrial waste VOCs gas.
基金financial support from the National Key Research and Development Program of China(2016YFB0600305)National Natural Science Foundation of China(21808153,22078220)。
文摘The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compound is one of the most efficient methods to upgrade coal tar.In this study,density functional theory calculations are employed to assess and analyze in detail the hydrodeoxygenation of dibenzofuran,as a model compound of coal tar,on the Ni(111)surface.The obtained results indicate that dibenzofuran can be firstly hydrogenated to tetra hy d rod i be nzofura n and hexahydfodibenzofufan.The five-membered-ring opening reaction of tetrahydrodibenzofuran is more straightforward than that of hexahydrodibenzofuran(Ea=0.71 eV vs.1.66 eV).Then,both pathways generate an intermediate 2-cyclohexylphenoxy compound.One part of 2-cyclohexylphenoxy is hydrogenated to 2-cyclohexylphenol and consecutively hydrogenated to cyclohexylcyclohexanol,and another part is directly hydrogenated to cyclohexylcyclohexanone.The hydrogenated intermediates of2-cyclohexylphenol have higher deoxygenation barriers than 2-cyclohexylphenol and cyclohexylcy clohexanol.During the hydrogenation process of cyclohexylcyclohexanone to cyclohexylcyclohexanol,the intermediate 26,formed by adding H to O atom of cyclohexylcyclohexanone,exhibits the lowest deoxygenation barrier of 1.08 eV.High hydrogen coverage may promote the hydrogenation of tetrahydrodibenzofuran,hexahydrodibenzofuran,and intermediate 26 to generate dodecahydrodibenzofuran and cyclohexylcyclohexanol.This dibenzofuran hydrodeoxygenation reaction mechanism corroborates well with previous experimental results and provides a theoretical basis for further optimization of the design of nickel-based catalysts.
基金supported by the National Natural Science Foundation of China(21776312)。
文摘The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil,and their catalytic cracking performance was investigated.There are nine classes of basic nitrogen compounds(BNCs)and eleven classes of non-basic heteroatomic compounds(NBHCs)in the different distillates.The dominant BNCs are mainly basic N1 class species.The dominant NBHCs are mainly acidic O2 and O1 class species in the300-350℃,350-400℃,and 400-450℃distillates,while the neutral N1,N1 O1 and N2 compounds become relatively abundant in the>450℃fraction.The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation(different carbon number)but not by aromaticity(different double-bond equivalent values).The basic N1 O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity.After the catalytic cracking of Fushun shale oil,the classes of BNCs in the liquid products remain unchanged,while the classes and relative abundances of NBHCs vary significantly.
基金Supported by the State Science Foundation of China (No. 20737001)
文摘Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.
基金subsidized by the National Natural Science Foundation of China (Nos.50474066,50874108 and 50921002)the Fundamental Research Funds for the Central Universities(No.2010LKHX01)the National Basic Research Program of China (No.2012CB214900)
文摘Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.
基金The Project Supported by:NSFC of PR China (50778088)National "863 Resource and Environment" Funding of PR China (2006AA06Z383)National Excellent Young Scientists (50825802).
文摘The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers. Surface chemistry and functionality of the polymers are characterized by Fourier-transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (NMR) and contact angle. The results showed that the ether groups were from chloromethylated reaction, and the alcohol groups arose from partial hydrolysis of chloromethyl groups during the post-crosslinking reaction, and the carbonyl functionality was formed by further oxidation of the alcohol groups. Catalyst and solvent used in the postcrosslinking reaction would greatly influence the surface chemistry of the polymer.
基金the financial support from the Key Programs of Science and Technology of SINPOEC (Grant No. P11093)
文摘An interfacially active cobalt complex,cobalt dodecylbenzenesulfonate,was synthesized.Elemental analysis,atomic absorption spectroscopy,Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis,and surface/interfacial tension determination were performed to investigate the properties of the catalyst.Results showed that the synthesized catalyst showed active interfacial behavior,decreasing the surface tension and interfacial tension between heavy oil and liquid phase to below 30 and 1.5 mN/m,respectively.The catalyst was not thermally degraded at a temperature of 400 ℃,indicating its high thermal stability.Catalytic performance of the catalyst was evaluated by carrying out aquathermolysis.The viscosity determination showed that the viscosity of the heavy oil decreased by 38%.The average molecular weight,group compositions,and average molecular structure of various samples were analyzed using elemental analysis,FT-IR,electrospray ionization Fourier transform ion cyclotron resonance(ESI FT-ICR MS),and ~1H nuclear magnetic resonance.Results indicated that the catalyst could attack the sulfur- and O_2-type heteroatomic compounds in asphaltene and resin,especially the compounds with aromatic structure,leading to a decrease in the molecular weight and then the reduction in the viscosity of heavy oil.Therefore,the synthesized catalyst might find an application in catalytic aquathermolysis of heavy oil,especially for the high-aromaticity heavy oil with high oxygen content.