In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ...In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.展开更多
Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deproton...Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deprotonation kinetics and inherent adsorption energy scaling relations.Herein,we construct a tunable proton acceptor(TPA)on oxyhydroxides by in-situ reconstruction of metal oxoacids such as NiC2O4to accelerate deprotonation and break adsorption energy scaling relations during OER.The modified C_(2)O_(4)^(2-)as a TPA can easily extract H of*OH(forming*HC2O4intermediate)and then promote deprotonation by the transmitted hydrogen bond with*OOH along conjugated(H...)O=C-O(-H)chain.As a result,Ni OOH-C2O4shows non-concerted proton-electron transfer and improved deprotonation rate,and delivers a good OER activity(270 mV@10 mA cm-2).The conjugate acidity coefficient(pKa)of the modified oxoacid group can be a descriptor for TPA selection.This TPA strategy can be universally applied to Co-,Fe-,and Ni-based oxyhydroxides to facilitate OER efficiency.展开更多
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is st...Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.展开更多
Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generati...Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.展开更多
Polypyrrole(PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors.However,they cannot readily provide high specific capacitance and cyclic stabi...Polypyrrole(PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors.However,they cannot readily provide high specific capacitance and cyclic stability owing to their inherent drawbacks,such as high resistance,Weber impedance,and volume expansion or collapse during charging/discharging.In this study,iron oxyhydroxide(FeOOH)is incorporated in the abovementioned composite to decrease the equivalent series resistance,charge transfer resistance,and Weber impedance,thereby enhancing electron transfer and ion diffusion,which results in superior electrochemical performance.The PPy-wrapped FeOOH@cellulose fiber-based composite electrode with the molar ratio of FeSO_(4) to NaBH4 of 1∶1 exhibits a high specific capacitance of 513.8 F/g at a current density of 0.2 A/g,as well as an excellent capacitance retention of 89.4% after 1000 cycles.展开更多
Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐do...Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.展开更多
The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tunin...The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements.展开更多
First-row(3 d)transition metal oxyhydroxides have attracted increasing attention due to their various advantages.Although investigating the oxidation mechanism and processing such materials into hierarchical architect...First-row(3 d)transition metal oxyhydroxides have attracted increasing attention due to their various advantages.Although investigating the oxidation mechanism and processing such materials into hierarchical architectures are greatly desired for their further development,it remains unclear how the oxidation state change occurs,and efforts to produce hierarchical oxyhydroxides in compliance with high ecological and economic standards have progressed slowly.Here,we describe a facile one-step coprecipitation route for the preparation of hierarchical CoOOH,NiOOH and MnOOH,which involves the diffusion of NH_(3)originating from ammonium hydroxide solution into an aqueous solution containing metal ion salts and K_(2)S_(2)O_(8).Comprehensive characterizations by scanning electron microscope,transmission electron microscopy,X-ray diffraction analysis,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy and in situ p H measurement demonstrated that K_(2)S_(2)O_(8)induces the oxidation state change of metal ion species after the start of hydrolysis.Meanwhile,it was found that,benefiting from the OH–concentration gradient created by the NH_(3)diffusion method and the suitable growth environment provided by the presence of K_(2)S_(2)O_(8)(high nucleation rate and secondary nucleation),the formation of hierarchical oxyhydroxide structures can be realized in aqueous solution at ambient temperature without the use of heat energy and additional structure-directing agents.The hierarchical CoOOH structures are performed as the electrocatalysts for the oxygen evolution reaction in alkaline media,which exhibit good activity with an overpotential of 320 m V at 10 m A cm^(-2)and a low Tafel slope of 59.6 m V dec^(–1),outperforming many congeneric electrocatalysts.Overall,our study not only provides important insights to understand the formation mechanism of hierarchical oxyhydroxides,but also opens up new opportunities for the preparation of hierarchical oxyhydroxides via a facile,green and low-cost method.展开更多
AIM To examine possible alterations in acid-base parameters in patients switching from lanthanum carbonate(LanC) to sucroferric oxyhydroxide(SFOH). METHODS Fifteen stable hemodialysis patients were switched from LanC ...AIM To examine possible alterations in acid-base parameters in patients switching from lanthanum carbonate(LanC) to sucroferric oxyhydroxide(SFOH). METHODS Fifteen stable hemodialysis patients were switched from LanC to SFOH. Only nine continued on SFOH, three returned to LanC and the other three switched to sevelamer carbonate. The later six patients served as a control group to the SFOH group of nine patients. Blood was sampled on the 3-d and the last 2-d interval of the week prior to switching and six weeks after. Bicarbonate levels(HCO_3^-), pH, pO_2, pCO_2 were measured, and the mean of the two measurements(3-d and 2-d interval) was calculated. RESULTS Comparing pre-switching to post-switching measurementsin the SFOH group, no statistically significant differences were found in any of the parameters studied. The mean pre-switching HCO_3^-was 22.41 ± 1.66 mmol/L and the mean post-switching was 22.62 ± 2.25 mmol/L(P = 0.889). Respectively, the mean pH= 7.38 ± 0.03 vs 7.39 ± 0.03(P = 0.635), mean pCO_2= 38.41 ± 3.29 vs 38.37 ± 3.62 mmHg(P = 0.767), and Phosphate = 1.57 ± 0.27 vs 1.36 ± 0.38 mmol/L(P = 0.214). There were not any significant differences when we performed the same analyses in the control group or between the SFOH group and control group. No correlations were found, either between pre-switching LanC daily dose or between postswitching daily dose of the new binder and the measured parameters.CONCLUSION In our small study, switching from LanC to SFOH did not have any significant effect on blood bicarbonate levels and gas analysis, indicating that there is no need to change hemodialysis prescription regarding these parameters.展开更多
Developing highly efficient and low-cost electrocatalysts towards oxygen evolution reaction(OER)is essential for practical application in water electrolyzers and rechargeable metal-air batteries.Although Fe-based oxyh...Developing highly efficient and low-cost electrocatalysts towards oxygen evolution reaction(OER)is essential for practical application in water electrolyzers and rechargeable metal-air batteries.Although Fe-based oxyhydroxides are regarded as state-of-the-art non-noble OER electrocatalysts,the origin of performance enhancement derived from Fe doping remains a hot topic of considerable discussion.Herein,we demonstrate that in situ generated Fe vacancies in the pristine CoFeOOH catalyst through a pre-conversion process during alkaline OER result from dynamic Fe dissolution,identifying the origin of Fe-vacancy-induced enhanced OER kinetics.Density functional theory(DFT)calculations and experimental results including X-ray absorption fine-structure spectroscopy,in situ UV-Vis spectroscopy,and in situ Raman spectroscopy reveal that the Fe vacancies could significantly promote the d-band center and valence states of adjacent Co sites,alter the active site from Fe atom to Co atom,accelerate the formation of high-valent active Co^(4+)species,and reduce the energy barrier of the potential-determining step,thereby contribute to the significantly enhanced OER performance.展开更多
Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with ...Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with iron oxyhydroxide,resulting in enhanced removal efficiency.The experiment was conducted under various conditions:concentration,dosage,pH,agitation,and temperature.Material characterizations such as Brunauer Emmett Teller,X-ray diffraction,scanning electron microscopy,and Fourier transform infrared spectroscopy were implied to understand adsorption mechanisms.The Langmuir model revealed optimal concentrations for As(V)=500μg/L at pH-5 and As(III)=200μg/L at pH-7,resulting in 95%and 93%adsorption efficiencies,respectively.Maximum adsorption capacities“qm”were found to be 1266.943μg/g for As(V)and 1080.241μg/g for As(III).Freundlich model demonstrated favorable adsorption by indicating“n>1”such as As(V)=2.542 and As(III)=2.707;similarly,the speciation factor“RL<1”for both species as As(V)=0.1 and As(III)=0.5,respectively.The kinetic study presented a pseudo-second-order model as best fitted,indicating throughout chemisorption processes for removing As(V)and As(III).Furthermore,incorporating calcium carbonate presented a significant leap in the removal efficiency,indicating As(V)from 95%to 98%and As(III)from 93%to 96%,respectively.Our findings offer profound motivation for developing effective and sustainable solutions to tackle arsenic contamination,underscoring the exceptional promise of iron oxyhydroxide in conjunction with calcium carbonate to achieve maximum removal efficiency.展开更多
Highly active,durable and inexpensive oxygen evolution reaction(OER)catalysts are crucial for achieving practical and high-efficiency water splitting.Herein,hierarchical interconnected NixCo1−xOOH nanosheet arrays sup...Highly active,durable and inexpensive oxygen evolution reaction(OER)catalysts are crucial for achieving practical and high-efficiency water splitting.Herein,hierarchical interconnected NixCo1−xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method.Compared with pristine NiOOH,the obtained NixCo1−xOOH nanosheet arrays possess larger exposed electrochemical active surface area,faster transfer and collection of electrons and stronger electronic interaction,showing a low overpotential of 350 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 41 mV·dec−1 in basic solutions,with the OER performance superior to pristine NiOOH and most Ni-based catalysts.Furthermore,the NixCo1−xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm−2 for 24 hours,which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate.Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts.展开更多
The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor...The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.展开更多
During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium ...During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium and common oxyhydroxides under environmental conditions is necessary.In this work,uranium sorption behaviors on Al-,Mn-and Fe-oxyhydroxide minerals(boehmite,manganite,goethite,and lepidocrocite)were investigated by batch experiments.Results showed that the uranium sorption on Al-oxyhydroxide behaved significantly differently from the other three minerals.The sorption edge of the Mn-and Fe-oxyhydroxides located around pH 5,while the sorption edge of boehmite shifted about 1.5 pH unit to near neutral.The sorption isotherms of uranium on manganite,goethite and lepidocrocite at pH 5.0 could be well fitted by the Langmuir model.Instead of surface complexation,sorption on boehmite happened mainly by uranium-bearing carbonates and hydroxides precipitation as illustrated by the characterization results.Both carbonate and phosphate strongly affected the uranium sorption behavior.The removal efficiency of uranium by boehmite exceeded 98%after three sorption-desorption cycles,indicating it may be a potential material for uranium removal and recovery.展开更多
Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD anal...Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52mg.g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg.L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate 〉 nitrate 〉 chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE.展开更多
Europium oxyhydroxide crystals were synthesized by the flux method. The as-grown crystals were transparent and had a plate-like shape with natural flat surfaces. The powder XRD data were refined by assuming a monoclin...Europium oxyhydroxide crystals were synthesized by the flux method. The as-grown crystals were transparent and had a plate-like shape with natural flat surfaces. The powder XRD data were refined by assuming a monoclinic structure of the space group P21/m and lattice parameters of a=0.4346 nm, b=0.3744 nm, c=0.6107 nm, and β=108.62°. The magnetic susceptibility of the EuOOH crystals exhibited typical Van Vleck temperature-independent paramagnetism below 120 K. The calculated susceptibility, based on Van Vleck's theory, agreed with the experimental data to some extent, with the coupling constant λ=458±10 K. The experimental results were in close agreement with the results calculated using a modified formula with λ=505±2 K and a constant term C=4.6×10^-4 emu/(mol·Oe).展开更多
Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02-xTbxOOH and Gd1-y-zDyyBizOOH, were synthesized by a flux method. The color coordinates in the Commission Internationale de I'Eelairage (CIE) chro...Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02-xTbxOOH and Gd1-y-zDyyBizOOH, were synthesized by a flux method. The color coordinates in the Commission Internationale de I'Eelairage (CIE) chromaticity diagram of Gd0.98Eu0.02-xTbxOOH, obtained under 254 nm irradiation, shifted along a straight line with the changing values ofx to include the yellow region. The CIE coordinates of Dy^3+ doped in GdOOH were located in the yellow region, while the emission intensity of Dy^3+ under 286 nm irradiation increased by more than 40 times when co-doped with Bi^3+.展开更多
The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate...The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.展开更多
This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolaye...This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (-OH), carboxyl (-COOH), amine (-NH2) and methyl (-CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that E-Fe203 was detected on -NH2 surface. Crystallization for 10h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ^-Fe203 was found on -OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on -NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area.展开更多
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model...Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.展开更多
基金the National Natural Science Foundation of China(52001173&52100190)the Jiangsu Specially-Appointed Professor Program,Natural Science Foundation of Jiangsu Province(BK20200970&BK20210834)+2 种基金General Project of Natural Science Research in Jiangsu Colleges and Universities(20KJB530011&20KJB430046)Research Fund of Nantong University(03083054)National College Students'innovation and entrepreneurship training program(202110304019Z)for financial support.
文摘In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.
基金the support from the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(22278307,22222808,21978200)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deprotonation kinetics and inherent adsorption energy scaling relations.Herein,we construct a tunable proton acceptor(TPA)on oxyhydroxides by in-situ reconstruction of metal oxoacids such as NiC2O4to accelerate deprotonation and break adsorption energy scaling relations during OER.The modified C_(2)O_(4)^(2-)as a TPA can easily extract H of*OH(forming*HC2O4intermediate)and then promote deprotonation by the transmitted hydrogen bond with*OOH along conjugated(H...)O=C-O(-H)chain.As a result,Ni OOH-C2O4shows non-concerted proton-electron transfer and improved deprotonation rate,and delivers a good OER activity(270 mV@10 mA cm-2).The conjugate acidity coefficient(pKa)of the modified oxoacid group can be a descriptor for TPA selection.This TPA strategy can be universally applied to Co-,Fe-,and Ni-based oxyhydroxides to facilitate OER efficiency.
基金supported by the Human Resources Development program(no.20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant funded by the Korea government Ministry of Trade,Industry and Energysupported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT and Future Planning(NRF-2015R1A2A2A01006856)
文摘Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.
基金Y.Hou expresses appreciation for the assistance of the National Natural Science Foundation of China(21922811,21878270,and 21961160742)the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)+2 种基金the Fundamental Research Funds for the Central Universities(2020XZZX002-09)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)the Startup Foundation for Hundred-Talent Program of Zhejiang University.K.Ostrikov acknowledges partial assistance from the Australian Research Council.
文摘Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.
基金This study was supported by the National Natural Science Foundation of China(grant no.31770620).
文摘Polypyrrole(PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors.However,they cannot readily provide high specific capacitance and cyclic stability owing to their inherent drawbacks,such as high resistance,Weber impedance,and volume expansion or collapse during charging/discharging.In this study,iron oxyhydroxide(FeOOH)is incorporated in the abovementioned composite to decrease the equivalent series resistance,charge transfer resistance,and Weber impedance,thereby enhancing electron transfer and ion diffusion,which results in superior electrochemical performance.The PPy-wrapped FeOOH@cellulose fiber-based composite electrode with the molar ratio of FeSO_(4) to NaBH4 of 1∶1 exhibits a high specific capacitance of 513.8 F/g at a current density of 0.2 A/g,as well as an excellent capacitance retention of 89.4% after 1000 cycles.
文摘Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.
基金supported by the Taishan Scholar Program of Shandong (ts201511027)the Natural Science Foundation of Shandong Province (2018GGX102030)+1 种基金support from the “Hundred Talent Program” of Chinese academy of Sciences (CAS) (RENZI[2015] 70HAO, Y5100619AM),DICP and QIBEBT (UN201804),Dalian National Laboratory For Clean Energy (DNL),CASResearch Innovation Fund (QIBEBT SZ201801)~~
文摘The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements.
基金funded by the Deutsche Forschungsgemeinschaft DFG and the Sino-German Center for Research Promotion(Grants GZ 1351 and CO 194/19-1)funded by a Chinese Scholarship Council stipend。
文摘First-row(3 d)transition metal oxyhydroxides have attracted increasing attention due to their various advantages.Although investigating the oxidation mechanism and processing such materials into hierarchical architectures are greatly desired for their further development,it remains unclear how the oxidation state change occurs,and efforts to produce hierarchical oxyhydroxides in compliance with high ecological and economic standards have progressed slowly.Here,we describe a facile one-step coprecipitation route for the preparation of hierarchical CoOOH,NiOOH and MnOOH,which involves the diffusion of NH_(3)originating from ammonium hydroxide solution into an aqueous solution containing metal ion salts and K_(2)S_(2)O_(8).Comprehensive characterizations by scanning electron microscope,transmission electron microscopy,X-ray diffraction analysis,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy and in situ p H measurement demonstrated that K_(2)S_(2)O_(8)induces the oxidation state change of metal ion species after the start of hydrolysis.Meanwhile,it was found that,benefiting from the OH–concentration gradient created by the NH_(3)diffusion method and the suitable growth environment provided by the presence of K_(2)S_(2)O_(8)(high nucleation rate and secondary nucleation),the formation of hierarchical oxyhydroxide structures can be realized in aqueous solution at ambient temperature without the use of heat energy and additional structure-directing agents.The hierarchical CoOOH structures are performed as the electrocatalysts for the oxygen evolution reaction in alkaline media,which exhibit good activity with an overpotential of 320 m V at 10 m A cm^(-2)and a low Tafel slope of 59.6 m V dec^(–1),outperforming many congeneric electrocatalysts.Overall,our study not only provides important insights to understand the formation mechanism of hierarchical oxyhydroxides,but also opens up new opportunities for the preparation of hierarchical oxyhydroxides via a facile,green and low-cost method.
文摘AIM To examine possible alterations in acid-base parameters in patients switching from lanthanum carbonate(LanC) to sucroferric oxyhydroxide(SFOH). METHODS Fifteen stable hemodialysis patients were switched from LanC to SFOH. Only nine continued on SFOH, three returned to LanC and the other three switched to sevelamer carbonate. The later six patients served as a control group to the SFOH group of nine patients. Blood was sampled on the 3-d and the last 2-d interval of the week prior to switching and six weeks after. Bicarbonate levels(HCO_3^-), pH, pO_2, pCO_2 were measured, and the mean of the two measurements(3-d and 2-d interval) was calculated. RESULTS Comparing pre-switching to post-switching measurementsin the SFOH group, no statistically significant differences were found in any of the parameters studied. The mean pre-switching HCO_3^-was 22.41 ± 1.66 mmol/L and the mean post-switching was 22.62 ± 2.25 mmol/L(P = 0.889). Respectively, the mean pH= 7.38 ± 0.03 vs 7.39 ± 0.03(P = 0.635), mean pCO_2= 38.41 ± 3.29 vs 38.37 ± 3.62 mmHg(P = 0.767), and Phosphate = 1.57 ± 0.27 vs 1.36 ± 0.38 mmol/L(P = 0.214). There were not any significant differences when we performed the same analyses in the control group or between the SFOH group and control group. No correlations were found, either between pre-switching LanC daily dose or between postswitching daily dose of the new binder and the measured parameters.CONCLUSION In our small study, switching from LanC to SFOH did not have any significant effect on blood bicarbonate levels and gas analysis, indicating that there is no need to change hemodialysis prescription regarding these parameters.
基金supported by the National Natural Science Foundation of China(22272121,21972107)the Fundamental Research Funds for the Central Universities(2042022kf1179).
文摘Developing highly efficient and low-cost electrocatalysts towards oxygen evolution reaction(OER)is essential for practical application in water electrolyzers and rechargeable metal-air batteries.Although Fe-based oxyhydroxides are regarded as state-of-the-art non-noble OER electrocatalysts,the origin of performance enhancement derived from Fe doping remains a hot topic of considerable discussion.Herein,we demonstrate that in situ generated Fe vacancies in the pristine CoFeOOH catalyst through a pre-conversion process during alkaline OER result from dynamic Fe dissolution,identifying the origin of Fe-vacancy-induced enhanced OER kinetics.Density functional theory(DFT)calculations and experimental results including X-ray absorption fine-structure spectroscopy,in situ UV-Vis spectroscopy,and in situ Raman spectroscopy reveal that the Fe vacancies could significantly promote the d-band center and valence states of adjacent Co sites,alter the active site from Fe atom to Co atom,accelerate the formation of high-valent active Co^(4+)species,and reduce the energy barrier of the potential-determining step,thereby contribute to the significantly enhanced OER performance.
基金funded by the National Natural Science Foundation of China(Nos.42177078 and 42020104005).
文摘Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with iron oxyhydroxide,resulting in enhanced removal efficiency.The experiment was conducted under various conditions:concentration,dosage,pH,agitation,and temperature.Material characterizations such as Brunauer Emmett Teller,X-ray diffraction,scanning electron microscopy,and Fourier transform infrared spectroscopy were implied to understand adsorption mechanisms.The Langmuir model revealed optimal concentrations for As(V)=500μg/L at pH-5 and As(III)=200μg/L at pH-7,resulting in 95%and 93%adsorption efficiencies,respectively.Maximum adsorption capacities“qm”were found to be 1266.943μg/g for As(V)and 1080.241μg/g for As(III).Freundlich model demonstrated favorable adsorption by indicating“n>1”such as As(V)=2.542 and As(III)=2.707;similarly,the speciation factor“RL<1”for both species as As(V)=0.1 and As(III)=0.5,respectively.The kinetic study presented a pseudo-second-order model as best fitted,indicating throughout chemisorption processes for removing As(V)and As(III).Furthermore,incorporating calcium carbonate presented a significant leap in the removal efficiency,indicating As(V)from 95%to 98%and As(III)from 93%to 96%,respectively.Our findings offer profound motivation for developing effective and sustainable solutions to tackle arsenic contamination,underscoring the exceptional promise of iron oxyhydroxide in conjunction with calcium carbonate to achieve maximum removal efficiency.
基金supported by the National Natural Science Foundation of China(No.21373182)the Zhejiang Provincial Natural Science Foundation of China(No.LY17B030004).
文摘Highly active,durable and inexpensive oxygen evolution reaction(OER)catalysts are crucial for achieving practical and high-efficiency water splitting.Herein,hierarchical interconnected NixCo1−xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method.Compared with pristine NiOOH,the obtained NixCo1−xOOH nanosheet arrays possess larger exposed electrochemical active surface area,faster transfer and collection of electrons and stronger electronic interaction,showing a low overpotential of 350 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 41 mV·dec−1 in basic solutions,with the OER performance superior to pristine NiOOH and most Ni-based catalysts.Furthermore,the NixCo1−xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm−2 for 24 hours,which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate.Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts.
基金supported by National Natural Science Foundation of China(Grant No.40830849)National Key Basic Research Program of China(Grant No.2013CB429700)+1 种基金Shandong Province Natural Science Foundation of China for Distin-guished Young Scholars(Grant No.JQ200913)the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences(Grant No.KZCX2-YW-211)
文摘The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.
基金National Natural Science Foundation of China(NSFC,No.11475008)。
文摘During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium and common oxyhydroxides under environmental conditions is necessary.In this work,uranium sorption behaviors on Al-,Mn-and Fe-oxyhydroxide minerals(boehmite,manganite,goethite,and lepidocrocite)were investigated by batch experiments.Results showed that the uranium sorption on Al-oxyhydroxide behaved significantly differently from the other three minerals.The sorption edge of the Mn-and Fe-oxyhydroxides located around pH 5,while the sorption edge of boehmite shifted about 1.5 pH unit to near neutral.The sorption isotherms of uranium on manganite,goethite and lepidocrocite at pH 5.0 could be well fitted by the Langmuir model.Instead of surface complexation,sorption on boehmite happened mainly by uranium-bearing carbonates and hydroxides precipitation as illustrated by the characterization results.Both carbonate and phosphate strongly affected the uranium sorption behavior.The removal efficiency of uranium by boehmite exceeded 98%after three sorption-desorption cycles,indicating it may be a potential material for uranium removal and recovery.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51208352), the Tianjin Research Program of Application Foundation and Advanced Technology (No.13JCQNJC09100), and Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QA201209).
文摘Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52mg.g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg.L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate 〉 nitrate 〉 chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE.
基金Project supported by Japan Society for the Promotion of Science(JSPS)KAKENHI Grants(21560696,24560827)
文摘Europium oxyhydroxide crystals were synthesized by the flux method. The as-grown crystals were transparent and had a plate-like shape with natural flat surfaces. The powder XRD data were refined by assuming a monoclinic structure of the space group P21/m and lattice parameters of a=0.4346 nm, b=0.3744 nm, c=0.6107 nm, and β=108.62°. The magnetic susceptibility of the EuOOH crystals exhibited typical Van Vleck temperature-independent paramagnetism below 120 K. The calculated susceptibility, based on Van Vleck's theory, agreed with the experimental data to some extent, with the coupling constant λ=458±10 K. The experimental results were in close agreement with the results calculated using a modified formula with λ=505±2 K and a constant term C=4.6×10^-4 emu/(mol·Oe).
基金Project supported by JSPS KAKENHI(21560696,24560827)
文摘Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02-xTbxOOH and Gd1-y-zDyyBizOOH, were synthesized by a flux method. The color coordinates in the Commission Internationale de I'Eelairage (CIE) chromaticity diagram of Gd0.98Eu0.02-xTbxOOH, obtained under 254 nm irradiation, shifted along a straight line with the changing values ofx to include the yellow region. The CIE coordinates of Dy^3+ doped in GdOOH were located in the yellow region, while the emission intensity of Dy^3+ under 286 nm irradiation increased by more than 40 times when co-doped with Bi^3+.
基金This work was supported by the National Key Research and Development Program of China(2017YFE0127600,2016YFA0202600)the Program of Introducing Talents of Discipline to Universities(B17034)+3 种基金the National Natural Science Foundation of China(51521001 and 51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Hubei Provincial Natural Science Foundation(2016CFB267)the Fundamental Research Funds for the Central Universities(WUT:2017-YB-001).
文摘The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.
文摘This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (-OH), carboxyl (-COOH), amine (-NH2) and methyl (-CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that E-Fe203 was detected on -NH2 surface. Crystallization for 10h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ^-Fe203 was found on -OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on -NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area.
基金supported by the National Key R&D Program of China (2020YFA0710000)the National Natural Science Foundation of China (22278307, 22008170, 21978200, 22161142002, and 22121004)+2 种基金the Applied Basic Research Program of Qinghai Province (2023-ZJ-701)the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students (2022BKYZ035)。
文摘Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.