期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Exceptional Performance of 3D Additive Manufactured NiFe Phosphite Oxyhydroxide Hollow Tubular Lattice Plastic Electrode for Large-Current-Density Water Oxidization
1
作者 Liping Ding Lin Zhang +7 位作者 Gaoyuan Li Shuyan Chen Han Yan Haibiao Tu Jianmin Su Qi Li Yanfeng Tang Yanqing Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期262-273,共12页
In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ... In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes. 展开更多
关键词 3D plastic electrode 3D printing induced chemical deposition largecurrent-density water oxidization NiFe phosphite oxyhydroxide
下载PDF
Metal-oxoacid-mediated oxyhydroxide with proton acceptor to break adsorption energy scaling relation for efficient oxygen evolution 被引量:1
2
作者 Rongrong Zhang Beibei Guo +4 位作者 Lun Pan Zhen-Feng Huang Chengxiang Shi Xiangwen Zhang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期594-602,I0013,共10页
Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deproton... Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deprotonation kinetics and inherent adsorption energy scaling relations.Herein,we construct a tunable proton acceptor(TPA)on oxyhydroxides by in-situ reconstruction of metal oxoacids such as NiC2O4to accelerate deprotonation and break adsorption energy scaling relations during OER.The modified C_(2)O_(4)^(2-)as a TPA can easily extract H of*OH(forming*HC2O4intermediate)and then promote deprotonation by the transmitted hydrogen bond with*OOH along conjugated(H...)O=C-O(-H)chain.As a result,Ni OOH-C2O4shows non-concerted proton-electron transfer and improved deprotonation rate,and delivers a good OER activity(270 mV@10 mA cm-2).The conjugate acidity coefficient(pKa)of the modified oxoacid group can be a descriptor for TPA selection.This TPA strategy can be universally applied to Co-,Fe-,and Ni-based oxyhydroxides to facilitate OER efficiency. 展开更多
关键词 ELECTROCATALYSIS Metal oxyhydroxide Oxoacid group Tunable proton acceptor Oxygen evolution reaction
下载PDF
Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films 被引量:4
3
作者 P.T.Babar B.S.Pawar +5 位作者 A.C.Lokhande M.G.Gang J.S.Jang M.P.Suryawanshi S.M.Pawar Jin Hyeok Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期757-761,共5页
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is st... Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution. 展开更多
关键词 Iron oxyhydroxide/oxide electrocatalyst Electrodeposition method Water splitting Linear sweep voltammetry (LSV) X-ray photoelectron spectroscopy (XPS)
下载PDF
Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions 被引量:2
4
作者 Jiaxin Yuan Xiaodi Cheng +7 位作者 Chaojun Lei Bin Yang Zhongjian Li Kun Luo K.H.Koko Lam Lecheng Lei Yang Hou Kostya Ken Ostrikov 《Engineering》 SCIE EI 2021年第9期1306-1312,共7页
Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generati... Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively. 展开更多
关键词 Bimetallic oxyhydroxide 3D hybrid ELECTROCATALYSIS Oxygen evolution reaction High current density
下载PDF
Improving Electrochemical Performance of Cellulose Fiber-based Supercapacitor Electrode Using Polypyrrole-wrapped Iron Oxyhydroxide 被引量:1
5
作者 Youngchu Kang Hailan Jin +1 位作者 Xianhui An Xueren Qian 《Paper And Biomaterials》 CAS 2021年第3期10-19,共10页
Polypyrrole(PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors.However,they cannot readily provide high specific capacitance and cyclic stabi... Polypyrrole(PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors.However,they cannot readily provide high specific capacitance and cyclic stability owing to their inherent drawbacks,such as high resistance,Weber impedance,and volume expansion or collapse during charging/discharging.In this study,iron oxyhydroxide(FeOOH)is incorporated in the abovementioned composite to decrease the equivalent series resistance,charge transfer resistance,and Weber impedance,thereby enhancing electron transfer and ion diffusion,which results in superior electrochemical performance.The PPy-wrapped FeOOH@cellulose fiber-based composite electrode with the molar ratio of FeSO_(4) to NaBH4 of 1∶1 exhibits a high specific capacitance of 513.8 F/g at a current density of 0.2 A/g,as well as an excellent capacitance retention of 89.4% after 1000 cycles. 展开更多
关键词 cellulose fibers iron oxyhydroxide POLYPYRROLE electrode material electrochemical performance
下载PDF
Copper‐doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation
6
作者 Huining Wang Anxiang Guan +7 位作者 Junbo Zhang Yuying Mi Si Li Taotao Yuan Chao Jing Lijuan Zhang Linjuan Zhang Gengfeng Zheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1478-1484,共7页
Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐do... Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation. 展开更多
关键词 Ethanol oxidation reaction ELECTROCATALYST Cu doping Nickel oxyhydroxide ACETATE
下载PDF
Iron-induced 3D nanoporous iron-cobalt oxyhydroxide on carbon cloth as a highly efficient electrode for oxygen evolution reaction
7
作者 Guodong Chen Jian Du +3 位作者 Xilong Wang Xiaoyue Shi Zonghua Wang Han-Pu Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1540-1547,共8页
The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tunin... The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements. 展开更多
关键词 3D nanoporous iron-cobalt oxyhydroxide layer Micro go chess piece arrays Electrode material Electro-oxidation Oxygen evolution reaction
下载PDF
Synthesis of hierarchical transition metal oxyhydroxides in aqueous solution at ambient temperature and their application as OER electrocatalysts
8
作者 Zongkun Chen Xingkun Wang +3 位作者 Sascha Keßler Qiqi Fan Minghua Huang Helmut Cölfen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期89-97,I0003,共10页
First-row(3 d)transition metal oxyhydroxides have attracted increasing attention due to their various advantages.Although investigating the oxidation mechanism and processing such materials into hierarchical architect... First-row(3 d)transition metal oxyhydroxides have attracted increasing attention due to their various advantages.Although investigating the oxidation mechanism and processing such materials into hierarchical architectures are greatly desired for their further development,it remains unclear how the oxidation state change occurs,and efforts to produce hierarchical oxyhydroxides in compliance with high ecological and economic standards have progressed slowly.Here,we describe a facile one-step coprecipitation route for the preparation of hierarchical CoOOH,NiOOH and MnOOH,which involves the diffusion of NH_(3)originating from ammonium hydroxide solution into an aqueous solution containing metal ion salts and K_(2)S_(2)O_(8).Comprehensive characterizations by scanning electron microscope,transmission electron microscopy,X-ray diffraction analysis,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy and in situ p H measurement demonstrated that K_(2)S_(2)O_(8)induces the oxidation state change of metal ion species after the start of hydrolysis.Meanwhile,it was found that,benefiting from the OH–concentration gradient created by the NH_(3)diffusion method and the suitable growth environment provided by the presence of K_(2)S_(2)O_(8)(high nucleation rate and secondary nucleation),the formation of hierarchical oxyhydroxide structures can be realized in aqueous solution at ambient temperature without the use of heat energy and additional structure-directing agents.The hierarchical CoOOH structures are performed as the electrocatalysts for the oxygen evolution reaction in alkaline media,which exhibit good activity with an overpotential of 320 m V at 10 m A cm^(-2)and a low Tafel slope of 59.6 m V dec^(–1),outperforming many congeneric electrocatalysts.Overall,our study not only provides important insights to understand the formation mechanism of hierarchical oxyhydroxides,but also opens up new opportunities for the preparation of hierarchical oxyhydroxides via a facile,green and low-cost method. 展开更多
关键词 Formation mechanism Hierarchical transition metal oxyhydroxides Aqueous solution Ambient temperature Oxygen evolution reaction
下载PDF
Bicarbonate levels in hemodialysis patients switching from lanthanum carbonate to sucroferric oxyhydroxide
9
作者 Aristeidis Stavroulopoulos Vasiliki Aresti +3 位作者 Christoforos Papadopoulos Panagiotis Nennes Polixeni Metaxaki Anastasios Galinas 《World Journal of Nephrology》 2018年第6期123-128,共6页
AIM To examine possible alterations in acid-base parameters in patients switching from lanthanum carbonate(LanC) to sucroferric oxyhydroxide(SFOH). METHODS Fifteen stable hemodialysis patients were switched from LanC ... AIM To examine possible alterations in acid-base parameters in patients switching from lanthanum carbonate(LanC) to sucroferric oxyhydroxide(SFOH). METHODS Fifteen stable hemodialysis patients were switched from LanC to SFOH. Only nine continued on SFOH, three returned to LanC and the other three switched to sevelamer carbonate. The later six patients served as a control group to the SFOH group of nine patients. Blood was sampled on the 3-d and the last 2-d interval of the week prior to switching and six weeks after. Bicarbonate levels(HCO_3^-), pH, pO_2, pCO_2 were measured, and the mean of the two measurements(3-d and 2-d interval) was calculated. RESULTS Comparing pre-switching to post-switching measurementsin the SFOH group, no statistically significant differences were found in any of the parameters studied. The mean pre-switching HCO_3^-was 22.41 ± 1.66 mmol/L and the mean post-switching was 22.62 ± 2.25 mmol/L(P = 0.889). Respectively, the mean pH= 7.38 ± 0.03 vs 7.39 ± 0.03(P = 0.635), mean pCO_2= 38.41 ± 3.29 vs 38.37 ± 3.62 mmHg(P = 0.767), and Phosphate = 1.57 ± 0.27 vs 1.36 ± 0.38 mmol/L(P = 0.214). There were not any significant differences when we performed the same analyses in the control group or between the SFOH group and control group. No correlations were found, either between pre-switching LanC daily dose or between postswitching daily dose of the new binder and the measured parameters.CONCLUSION In our small study, switching from LanC to SFOH did not have any significant effect on blood bicarbonate levels and gas analysis, indicating that there is no need to change hemodialysis prescription regarding these parameters. 展开更多
关键词 Gas analysis HEMODIALYSIS LANTHANUM CARBONATE ACIDOSIS BICARBONATE Phosphate BINDER Sucroferric oxyhydroxide
下载PDF
Identification of in situ Generated Iron-Vacancy Induced Oxygen Evolution Reaction Kinetics on Cobalt Iron Oxyhydroxide 被引量:1
10
作者 Na Yao Juan Zhu +2 位作者 Hongnan Jia Hengjiang Cong Wei Luo 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第4期343-350,共8页
Developing highly efficient and low-cost electrocatalysts towards oxygen evolution reaction(OER)is essential for practical application in water electrolyzers and rechargeable metal-air batteries.Although Fe-based oxyh... Developing highly efficient and low-cost electrocatalysts towards oxygen evolution reaction(OER)is essential for practical application in water electrolyzers and rechargeable metal-air batteries.Although Fe-based oxyhydroxides are regarded as state-of-the-art non-noble OER electrocatalysts,the origin of performance enhancement derived from Fe doping remains a hot topic of considerable discussion.Herein,we demonstrate that in situ generated Fe vacancies in the pristine CoFeOOH catalyst through a pre-conversion process during alkaline OER result from dynamic Fe dissolution,identifying the origin of Fe-vacancy-induced enhanced OER kinetics.Density functional theory(DFT)calculations and experimental results including X-ray absorption fine-structure spectroscopy,in situ UV-Vis spectroscopy,and in situ Raman spectroscopy reveal that the Fe vacancies could significantly promote the d-band center and valence states of adjacent Co sites,alter the active site from Fe atom to Co atom,accelerate the formation of high-valent active Co^(4+)species,and reduce the energy barrier of the potential-determining step,thereby contribute to the significantly enhanced OER performance. 展开更多
关键词 CoFe oxyhydroxide Oxygen evolution reaction Fe vacancy ELECTROCATALYSIS Kinetics Reaction mechanisms
原文传递
Application of Synthetic Iron Oxyhydroxide with Influencing Factors for Removal of As(Ⅴ) and As(Ⅲ) from Groundwater
11
作者 Shakeel Ahmed Talpur Muhammad Yousuf Jat Baloch +3 位作者 Chunli Su Javed Iqbal Aziz Ahmed Hafeez Ahmed Talpur 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期998-1009,共12页
Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with ... Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with iron oxyhydroxide,resulting in enhanced removal efficiency.The experiment was conducted under various conditions:concentration,dosage,pH,agitation,and temperature.Material characterizations such as Brunauer Emmett Teller,X-ray diffraction,scanning electron microscopy,and Fourier transform infrared spectroscopy were implied to understand adsorption mechanisms.The Langmuir model revealed optimal concentrations for As(V)=500μg/L at pH-5 and As(III)=200μg/L at pH-7,resulting in 95%and 93%adsorption efficiencies,respectively.Maximum adsorption capacities“qm”were found to be 1266.943μg/g for As(V)and 1080.241μg/g for As(III).Freundlich model demonstrated favorable adsorption by indicating“n>1”such as As(V)=2.542 and As(III)=2.707;similarly,the speciation factor“RL<1”for both species as As(V)=0.1 and As(III)=0.5,respectively.The kinetic study presented a pseudo-second-order model as best fitted,indicating throughout chemisorption processes for removing As(V)and As(III).Furthermore,incorporating calcium carbonate presented a significant leap in the removal efficiency,indicating As(V)from 95%to 98%and As(III)from 93%to 96%,respectively.Our findings offer profound motivation for developing effective and sustainable solutions to tackle arsenic contamination,underscoring the exceptional promise of iron oxyhydroxide in conjunction with calcium carbonate to achieve maximum removal efficiency. 展开更多
关键词 adsorption ARSENIC AS(V) AS(III) iron oxyhydroxide isotherms kinetics groundwater.
原文传递
Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide(NixCo1−xOOH)catalysts with enhanced electrocatalytic performance for oxygen evolution reaction 被引量:8
12
作者 Liang-ai Huang Zhishun He +3 位作者 Jianfeng Guo Shi-en Pei Haibo Shao Jianming Wang 《Nano Research》 SCIE EI CAS CSCD 2020年第1期246-254,共9页
Highly active,durable and inexpensive oxygen evolution reaction(OER)catalysts are crucial for achieving practical and high-efficiency water splitting.Herein,hierarchical interconnected NixCo1−xOOH nanosheet arrays sup... Highly active,durable and inexpensive oxygen evolution reaction(OER)catalysts are crucial for achieving practical and high-efficiency water splitting.Herein,hierarchical interconnected NixCo1−xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method.Compared with pristine NiOOH,the obtained NixCo1−xOOH nanosheet arrays possess larger exposed electrochemical active surface area,faster transfer and collection of electrons and stronger electronic interaction,showing a low overpotential of 350 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 41 mV·dec−1 in basic solutions,with the OER performance superior to pristine NiOOH and most Ni-based catalysts.Furthermore,the NixCo1−xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm−2 for 24 hours,which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate.Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts. 展开更多
关键词 nickel oxyhydroxide cobalt incorporation PHOTODEPOSITION ELECTROCATALYST oxygen evolution reaction
原文传递
Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin 被引量:7
13
作者 ZENG ZhiGang CHEN Shuai +3 位作者 WANG XiaoYuan OUYANG HeGen YIN XueBo LI ZhaoXue 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期2039-2048,共10页
The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor... The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin. 展开更多
关键词 Si-Fe-Mn oxyhydroxide NONTRONITE microbe PACMANUS hydrothermal field Eastern Manus Basin
原文传递
Uranium sorption on oxyhydroxide minerals by surface complexation and precipitation 被引量:4
14
作者 Jingyi Wang Wanqiang Zhou +4 位作者 Yanlin Shi Yao Li Dongfan Xian Ning Guo Chunli Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第7期3461-3467,共7页
During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium ... During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium and common oxyhydroxides under environmental conditions is necessary.In this work,uranium sorption behaviors on Al-,Mn-and Fe-oxyhydroxide minerals(boehmite,manganite,goethite,and lepidocrocite)were investigated by batch experiments.Results showed that the uranium sorption on Al-oxyhydroxide behaved significantly differently from the other three minerals.The sorption edge of the Mn-and Fe-oxyhydroxides located around pH 5,while the sorption edge of boehmite shifted about 1.5 pH unit to near neutral.The sorption isotherms of uranium on manganite,goethite and lepidocrocite at pH 5.0 could be well fitted by the Langmuir model.Instead of surface complexation,sorption on boehmite happened mainly by uranium-bearing carbonates and hydroxides precipitation as illustrated by the characterization results.Both carbonate and phosphate strongly affected the uranium sorption behavior.The removal efficiency of uranium by boehmite exceeded 98%after three sorption-desorption cycles,indicating it may be a potential material for uranium removal and recovery. 展开更多
关键词 Uranium mill tailings oxyhydroxides Uranium sorption Surface complexation Surface precipitation
原文传递
Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin 被引量:3
15
作者 Jing REN Nan LI +1 位作者 Lin ZHAO Nanqi REN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第4期531-538,共8页
Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD anal... Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52mg.g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg.L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate 〉 nitrate 〉 chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE. 展开更多
关键词 phosphate removal ADSORPTION nanosized ferric oxyhydroxide anion exchanger
原文传递
Van Vleck paramagnetism of europium oxyhydroxide 被引量:2
16
作者 Hiroaki Samata Naoki Wada Tadashi C.Ozawa 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第2期177-181,共5页
Europium oxyhydroxide crystals were synthesized by the flux method. The as-grown crystals were transparent and had a plate-like shape with natural flat surfaces. The powder XRD data were refined by assuming a monoclin... Europium oxyhydroxide crystals were synthesized by the flux method. The as-grown crystals were transparent and had a plate-like shape with natural flat surfaces. The powder XRD data were refined by assuming a monoclinic structure of the space group P21/m and lattice parameters of a=0.4346 nm, b=0.3744 nm, c=0.6107 nm, and β=108.62°. The magnetic susceptibility of the EuOOH crystals exhibited typical Van Vleck temperature-independent paramagnetism below 120 K. The calculated susceptibility, based on Van Vleck's theory, agreed with the experimental data to some extent, with the coupling constant λ=458±10 K. The experimental results were in close agreement with the results calculated using a modified formula with λ=505±2 K and a constant term C=4.6×10^-4 emu/(mol·Oe). 展开更多
关键词 europium oxyhydroxide magnetic measurement Van Vleck paramagnetism rare earths
原文传递
Yellow luminescence of co-doped gadolinium oxyhydroxide 被引量:1
17
作者 Hiroaki Samata Shungo Imanaka +1 位作者 Masashi Hanioka Tadashi C.Ozawa 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第7期712-716,共5页
Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02-xTbxOOH and Gd1-y-zDyyBizOOH, were synthesized by a flux method. The color coordinates in the Commission Internationale de I'Eelairage (CIE) chro... Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02-xTbxOOH and Gd1-y-zDyyBizOOH, were synthesized by a flux method. The color coordinates in the Commission Internationale de I'Eelairage (CIE) chromaticity diagram of Gd0.98Eu0.02-xTbxOOH, obtained under 254 nm irradiation, shifted along a straight line with the changing values ofx to include the yellow region. The CIE coordinates of Dy^3+ doped in GdOOH were located in the yellow region, while the emission intensity of Dy^3+ under 286 nm irradiation increased by more than 40 times when co-doped with Bi^3+. 展开更多
关键词 gadolinium oxyhydroxide PHOSPHOR CO-DOPING yellow luminescence rare earths
原文传递
In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage
18
作者 Fangyu Xiong Fan Lv +5 位作者 Chen Tang Pengfei Zhang Shuangshuang Tan Qinyou An Shaojun Guo Liqiang Mai 《Science China Materials》 SCIE EI CSCD 2020年第10期1993-2001,共9页
The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate... The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures. 展开更多
关键词 selective dissolution-regrowth iron oxyhydroxide hierarchical nanotube lithium-ion battery anode material
原文传递
Effect of functional groups on the crystallization of ferric oxides/oxyhydroxides in suspension environment
19
作者 Qiong ZHOU Olga ALBERT +4 位作者 Hua DENG Xiao-Long YU Yang CAO Jian-Bao LI Xin HUANG 《Frontiers of Materials Science》 SCIE CSCD 2012年第4期297-303,共7页
This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolaye... This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (-OH), carboxyl (-COOH), amine (-NH2) and methyl (-CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that E-Fe203 was detected on -NH2 surface. Crystallization for 10h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ^-Fe203 was found on -OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on -NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area. 展开更多
关键词 biocrystallization SUSPENSION ferric oxide/oxyhydroxide functional group
原文传递
Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation 被引量:3
20
作者 Zexing He Xiaokang Liu +7 位作者 Minghui Zhang Lei Guo Muhammad Ajmal Lun Pan Chengxiang Shi Xiangwen Zhang Zhen-Feng Huang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期570-580,I0014,共12页
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model... Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions. 展开更多
关键词 Oxygen evolution reaction Reconstruction mechanism Metal oxyhydroxides Electron transfer channels Ferromagnetic exchange-field penetration
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部