Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for t...Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for the L p-norms of the maximal functions of martinglaes. Our result is the extension and improvements of the results obtained previously by HITCZENKO and ZENG .展开更多
In surveying data processing,we generally suppose that the observational errors distribute normally.In this case the method of least squares can give the minimum variance unbiased estimation of the parameters.The meth...In surveying data processing,we generally suppose that the observational errors distribute normally.In this case the method of least squares can give the minimum variance unbiased estimation of the parameters.The method of least squares does not have the character of robustness,so the use of it will become unsuitable when a few measurements inheriting gross error mix with others.We can use the robust estimating methods that can avoid the influence of gross errors.With this kind of method there is no need to know the exact distribution of the observations.But it will cause other difficulties such as the hypothesis testing for estimated parameters when the sample size is not so big.For non_normally distributed measurements we can suppose they obey the p _norm distribution law.The p _norm distribution is a distributional class,which includes the most frequently used distributions such as the Laplace,Normal and Rectangular ones.This distribution is symmetric and has a kurtosis between 3 and -6/5 when p is larger than 1.Using p _norm distribution to describe the statistical character of the errors,the only assumption is that the error distribution is a symmetric and unimodal curve.This method possesses the property of a kind of self_adapting.But the density function of the p _norm distribution is so complex that it makes the theoretical analysis more difficult.And the troublesome calculation also makes this method not suitable for practice.The research of this paper indicates that the p _norm distribution can be represented by the linear combination of Laplace distribution and normal distribution or by the linear combination of normal distribution and rectangular distribution approximately.Which kind of representation will be taken is according to whether the parameter p is larger than 1 and less than 2 or p is larger than 2.The approximate distribution have the same first four order moments with the exact one.It means that approximate distribution has the same mathematical expectation,variance,skewness and kurtosis with p _norm distribution.Because every density function used in the approximate formulae has a simple form,using the approximate density function to replace the p _norm ones will simplify the problems of p _norm distributed data processing obviously.展开更多
The cause of the formal difference of p-norm distribution density functions is analyzed, two problems in the deduction of p-norm formulating are improved, and it is proved that two different forms of p-norm distributi...The cause of the formal difference of p-norm distribution density functions is analyzed, two problems in the deduction of p-norm formulating are improved, and it is proved that two different forms of p-norm distribution density functions are equivalent. This work is useful for popularization and application of the p-norm theory to surveying and mapping.展开更多
This paper studies the parameter estimation problems of the nonlinear systems described by the bilinear state space models in the presence of disturbances.A bilinear state observer is designed for deriving identificat...This paper studies the parameter estimation problems of the nonlinear systems described by the bilinear state space models in the presence of disturbances.A bilinear state observer is designed for deriving identification algorithms to estimate the state variables using the input-output data.Based on the bilinear state observer,a novel gradient iterative algorithm is derived for estimating the parameters of the bilinear systems by means of the continuous mixed p-norm cost function.The gain at each iterative step adapts to the data quality so that the algorithm has good robustness to the noise disturbance.Furthermore,to improve the performance of the proposed algorithm,a dynamicmoving window is designed which can update the dynamical data by removing the oldest data and adding the newestmeasurement data.A numerical example of identification of bilinear systems is presented to validate the theoretical analysis.展开更多
For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and th...For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.展开更多
In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the...In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.展开更多
Negative emotion classification refers to the automatic classification of negative emotion of texts in social networks.Most existing methods are based on deep learning models,facing challenges such as complex structur...Negative emotion classification refers to the automatic classification of negative emotion of texts in social networks.Most existing methods are based on deep learning models,facing challenges such as complex structures and too many hyperparameters.To meet these challenges,in this paper,we propose a method for negative emotion classification utilizing a Robustly Optimized BERT Pretraining Approach(RoBERTa)and p-norm Broad Learning(p-BL).Specifically,there are mainly three contributions in this paper.Firstly,we fine-tune the RoBERTa to adapt it to the task of negative emotion classification.Then,we employ the fine-tuned RoBERTa to extract features of original texts and generate sentence vectors.Secondly,we adopt p-BL to construct a classifier and then predict negative emotions of texts using the classifier.Compared with deep learning models,p-BL has advantages such as a simple structure that is only 3-layer and fewer parameters to be trained.Moreover,it can suppress the adverse effects of more outliers and noise in data by flexibly changing the value of p.Thirdly,we conduct extensive experiments on the public datasets,and the experimental results show that our proposed method outperforms the baseline methods on the tested datasets.展开更多
This paper studies the global exponential p-norm stability of bidirectional associative memory(BAM)neural networks with unbounded time-varying delays.A novel method based on the representation of solutions is put forw...This paper studies the global exponential p-norm stability of bidirectional associative memory(BAM)neural networks with unbounded time-varying delays.A novel method based on the representation of solutions is put forward to deduce a global exponential p-norm stability criterion.This method does not need to set up any Lyapunov-Krasovskii functionals(LKF),which can greatly reduce a large amount of computations and is simpler than the existing methods.In the end,representative numerical examples are given to llustrate the availability of the method.展开更多
By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stabl...By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成...与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。展开更多
文摘Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for the L p-norms of the maximal functions of martinglaes. Our result is the extension and improvements of the results obtained previously by HITCZENKO and ZENG .
文摘In surveying data processing,we generally suppose that the observational errors distribute normally.In this case the method of least squares can give the minimum variance unbiased estimation of the parameters.The method of least squares does not have the character of robustness,so the use of it will become unsuitable when a few measurements inheriting gross error mix with others.We can use the robust estimating methods that can avoid the influence of gross errors.With this kind of method there is no need to know the exact distribution of the observations.But it will cause other difficulties such as the hypothesis testing for estimated parameters when the sample size is not so big.For non_normally distributed measurements we can suppose they obey the p _norm distribution law.The p _norm distribution is a distributional class,which includes the most frequently used distributions such as the Laplace,Normal and Rectangular ones.This distribution is symmetric and has a kurtosis between 3 and -6/5 when p is larger than 1.Using p _norm distribution to describe the statistical character of the errors,the only assumption is that the error distribution is a symmetric and unimodal curve.This method possesses the property of a kind of self_adapting.But the density function of the p _norm distribution is so complex that it makes the theoretical analysis more difficult.And the troublesome calculation also makes this method not suitable for practice.The research of this paper indicates that the p _norm distribution can be represented by the linear combination of Laplace distribution and normal distribution or by the linear combination of normal distribution and rectangular distribution approximately.Which kind of representation will be taken is according to whether the parameter p is larger than 1 and less than 2 or p is larger than 2.The approximate distribution have the same first four order moments with the exact one.It means that approximate distribution has the same mathematical expectation,variance,skewness and kurtosis with p _norm distribution.Because every density function used in the approximate formulae has a simple form,using the approximate density function to replace the p _norm ones will simplify the problems of p _norm distributed data processing obviously.
基金Supported by Scientific Research Fund of Hunan Province Education Department (No.03C483) .
文摘The cause of the formal difference of p-norm distribution density functions is analyzed, two problems in the deduction of p-norm formulating are improved, and it is proved that two different forms of p-norm distribution density functions are equivalent. This work is useful for popularization and application of the p-norm theory to surveying and mapping.
基金funded by the National Natural Science Foundation of China(No.61773182)the 111 Project(B12018).
文摘This paper studies the parameter estimation problems of the nonlinear systems described by the bilinear state space models in the presence of disturbances.A bilinear state observer is designed for deriving identification algorithms to estimate the state variables using the input-output data.Based on the bilinear state observer,a novel gradient iterative algorithm is derived for estimating the parameters of the bilinear systems by means of the continuous mixed p-norm cost function.The gain at each iterative step adapts to the data quality so that the algorithm has good robustness to the noise disturbance.Furthermore,to improve the performance of the proposed algorithm,a dynamicmoving window is designed which can update the dynamical data by removing the oldest data and adding the newestmeasurement data.A numerical example of identification of bilinear systems is presented to validate the theoretical analysis.
基金The NSF (Q1107107) of Jiangsu Educational Commission.
文摘For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.
文摘In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.
基金This work was partially supported by the National Natural Science Foundation of China(No.61876205)the Ministry of Education of Humanities and Social Science Project(No.19YJAZH128)+1 种基金the Science and Technology Plan Project of Guangzhou(No.201804010433)the Bidding Project of Laboratory of Language Engineering and Computing(No.LEC2017ZBKT001).
文摘Negative emotion classification refers to the automatic classification of negative emotion of texts in social networks.Most existing methods are based on deep learning models,facing challenges such as complex structures and too many hyperparameters.To meet these challenges,in this paper,we propose a method for negative emotion classification utilizing a Robustly Optimized BERT Pretraining Approach(RoBERTa)and p-norm Broad Learning(p-BL).Specifically,there are mainly three contributions in this paper.Firstly,we fine-tune the RoBERTa to adapt it to the task of negative emotion classification.Then,we employ the fine-tuned RoBERTa to extract features of original texts and generate sentence vectors.Secondly,we adopt p-BL to construct a classifier and then predict negative emotions of texts using the classifier.Compared with deep learning models,p-BL has advantages such as a simple structure that is only 3-layer and fewer parameters to be trained.Moreover,it can suppress the adverse effects of more outliers and noise in data by flexibly changing the value of p.Thirdly,we conduct extensive experiments on the public datasets,and the experimental results show that our proposed method outperforms the baseline methods on the tested datasets.
基金supported in part by the Natural Science Foundation of Heilongjiang Province (No.YQ2021F014)the Fundamental Research Funds for the provincial universities of Heilongjiang Province (No.2020-KYYWF-1040)。
文摘This paper studies the global exponential p-norm stability of bidirectional associative memory(BAM)neural networks with unbounded time-varying delays.A novel method based on the representation of solutions is put forward to deduce a global exponential p-norm stability criterion.This method does not need to set up any Lyapunov-Krasovskii functionals(LKF),which can greatly reduce a large amount of computations and is simpler than the existing methods.In the end,representative numerical examples are given to llustrate the availability of the method.
基金The first author is partially supported by the National Natural Science Foundation of China (No.10271106)The second author is partially supported by the 973-Grant of Mathematics in China and the Huo Y.-D. fund.
文摘By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Au-tonomous Region(XJEDU2021Y048)Doctoral Initiation Fund of Xinjiang Institute of Engineering(2020xgy012302).
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。