Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber compositio...Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported.Method Lambs were injected with 0(control)or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth.At the age of 3 and 32 weeks,longissimus dorsi(LD)muscle samples were obtained to explore the effect of VA on myofiber type composition.In vitro,we investigated the effects of RA on myofiber type composition and intrinsic mechanisms.Results The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest.VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep.Further exploration revealed that VA elevated PGC-1αmRNA and protein contents,and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep.In addition,the number of type I myofibers with RA treatment was significantly increased,and type IIx myofibers was significantly decreased in primary myoblasts.Consistent with in vivo experiment,RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep.We then used si-PGC-1αto inhibit PGC-1αexpression and found that si-PGC-1αsignificantly abrogated RA-induced the formation of type I myofibers,mitochondrial biogenesis,MitoTracker staining intensity,UQCRC1 and ATP5A1 expression,SDH activity,and enhanced the level of type IIx muscle fibers.These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1αexpression,and increased type I myofibers.In order to prove that the effect of RA on the level of PGC-1αis caused by p38 MAPK signaling,we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor,which significantly reduced RA-induced PGC-1αand MyHC I levels.Conclusion VA promoted PGC-1αexpression through the p38 MAPK signaling pathway,improved mitochondrial biogenesis,and altered the composition of muscle fiber type.展开更多
目的研究麻杏解毒合剂对冠状病毒肺炎模型小鼠炎性因子表达的影响,基于p38MAPK/AP-1通路研究其疗效机制。方法60只昆明种(KM)小鼠随机分成空白对照组、模型组、p38MAPK抑制剂组及麻杏解毒合剂高、中、低剂量组,每组10只。采用模拟寒湿...目的研究麻杏解毒合剂对冠状病毒肺炎模型小鼠炎性因子表达的影响,基于p38MAPK/AP-1通路研究其疗效机制。方法60只昆明种(KM)小鼠随机分成空白对照组、模型组、p38MAPK抑制剂组及麻杏解毒合剂高、中、低剂量组,每组10只。采用模拟寒湿环境、表达h ACE2的重组腺相关病毒转导、SARS-CoV-2spike假病毒气管内给药建立小鼠冠状病毒肺炎模型。检测各组小鼠血清炎性因子、肺组织病理改变、肺组织p38MAPK、c-jun、c-fos的mRNA水平和蛋白表达情况。结果与空白对照组比较,模型组小鼠血清炎性因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)的表达均显著升高(P<0.01),肺组织炎性改变明显,c-fos m RNA水平和p-p38、c-fos、c-jun蛋白表达均显著增加(P<0.05)。与模型组比较,麻杏解毒合剂高、中剂量组小鼠血清炎性因子显著降低(P<0.01或P<0.05),小鼠肺组织炎性损伤明显减轻,同时肺组织中c-fos的mRNA水平和p-p38、c-fos的蛋白表达均显著下调(P<0.05)。结论麻杏解毒合剂能降低病毒性肺炎模型小鼠血清炎性因子水平,减轻肺组织炎性损伤,其疗效机制与抑制p38MAPK蛋白的磷酸化,下调AP-1通路mRNA及蛋白表达有关。展开更多
Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failu...Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.展开更多
Objective: Reliving the rela ti onship of the Caveolin-1-p38 MAPK signaling pathway and COPD tr acheob ronchomalacia, and resea rch the mechanism of Tiaobufeishen decoc tion imp rove the regression of the weasand cart...Objective: Reliving the rela ti onship of the Caveolin-1-p38 MAPK signaling pathway and COPD tr acheob ronchomalacia, and resea rch the mechanism of Tiaobufeishen decoc tion imp rove the regression of the weasand cartilage cells. Methods: Flow cytometry was used to analyze the apoptosis rate to determine the optimal concentration of Tiaobufeishen decoction and CSE, CCK8 assay was used to dete rmine the op ti mal concent ration of P38-MAPK specific inhibitor. The COPD cell model was created by tracheal chondrocyte which dispose by optimal concent ration CSE, then add the IL-1P set up the chond rocyte degene ration model, use the method of toluidine blue staining and immunohistochemical authenticate degeneration of cartilage. This research included control group, model group, model-Tiaobufeishen group, model-blocker group. When the model was set up succeed, add the Tiaobufeishen decoction and P38-MAPK blocke r in the model-Tiaobufeishen and model-blocke r gr oups, r espectively. Weste rn Blot was used to detect the exp ression of caveolin-1 and p-p38 in the chond rocyte. RT-PCR was used to detect the expression of MMP3 and caveolin-1 in the matrix. Results: The cell activity was not influence by the concentration of Tiaobufeishen decoction and blocker, the concentration of the CSE model was moderation. Compared with control group, the level of caveolin-1, p38MAPK, MMP3 in the model group was significant increase, moreover, the result of toluidine blue staining and immunohistochemical methods show that the chond rocyte has obvious reg ression. The exp ression of caveolin-1, p38MAPK, and MMP3 have significant decrease than the control group, and the reduction of chondrocyte degeneration. Conclusion: The caveolin-1-p38MAPK signaling pathway play an important role in the morbidity of the tracheobronchomalacia. Tiaobufeishen decoction could decrease the exp ression of the caveolin-1, p-p38, MMP3, inhibit the activa tion of the caveolin-1-p38MAPK signaling pathway, therefore, it can improve the tracheobronchomalacia.展开更多
基金funded by the National Natural Science Foundation of China(31972559)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University(2022JQPYGC01).
文摘Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported.Method Lambs were injected with 0(control)or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth.At the age of 3 and 32 weeks,longissimus dorsi(LD)muscle samples were obtained to explore the effect of VA on myofiber type composition.In vitro,we investigated the effects of RA on myofiber type composition and intrinsic mechanisms.Results The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest.VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep.Further exploration revealed that VA elevated PGC-1αmRNA and protein contents,and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep.In addition,the number of type I myofibers with RA treatment was significantly increased,and type IIx myofibers was significantly decreased in primary myoblasts.Consistent with in vivo experiment,RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep.We then used si-PGC-1αto inhibit PGC-1αexpression and found that si-PGC-1αsignificantly abrogated RA-induced the formation of type I myofibers,mitochondrial biogenesis,MitoTracker staining intensity,UQCRC1 and ATP5A1 expression,SDH activity,and enhanced the level of type IIx muscle fibers.These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1αexpression,and increased type I myofibers.In order to prove that the effect of RA on the level of PGC-1αis caused by p38 MAPK signaling,we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor,which significantly reduced RA-induced PGC-1αand MyHC I levels.Conclusion VA promoted PGC-1αexpression through the p38 MAPK signaling pathway,improved mitochondrial biogenesis,and altered the composition of muscle fiber type.
文摘目的研究麻杏解毒合剂对冠状病毒肺炎模型小鼠炎性因子表达的影响,基于p38MAPK/AP-1通路研究其疗效机制。方法60只昆明种(KM)小鼠随机分成空白对照组、模型组、p38MAPK抑制剂组及麻杏解毒合剂高、中、低剂量组,每组10只。采用模拟寒湿环境、表达h ACE2的重组腺相关病毒转导、SARS-CoV-2spike假病毒气管内给药建立小鼠冠状病毒肺炎模型。检测各组小鼠血清炎性因子、肺组织病理改变、肺组织p38MAPK、c-jun、c-fos的mRNA水平和蛋白表达情况。结果与空白对照组比较,模型组小鼠血清炎性因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)的表达均显著升高(P<0.01),肺组织炎性改变明显,c-fos m RNA水平和p-p38、c-fos、c-jun蛋白表达均显著增加(P<0.05)。与模型组比较,麻杏解毒合剂高、中剂量组小鼠血清炎性因子显著降低(P<0.01或P<0.05),小鼠肺组织炎性损伤明显减轻,同时肺组织中c-fos的mRNA水平和p-p38、c-fos的蛋白表达均显著下调(P<0.05)。结论麻杏解毒合剂能降低病毒性肺炎模型小鼠血清炎性因子水平,减轻肺组织炎性损伤,其疗效机制与抑制p38MAPK蛋白的磷酸化,下调AP-1通路mRNA及蛋白表达有关。
基金the Science and Technology Research Project of the Education Department of Jilin Province(No.JJKH20220862KJ)the Jilin Province higher education teaching reform research topic(No.20224BRFI7U003M)National Natural Science Foundation of China(No.82074324).
文摘Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.
文摘Objective: Reliving the rela ti onship of the Caveolin-1-p38 MAPK signaling pathway and COPD tr acheob ronchomalacia, and resea rch the mechanism of Tiaobufeishen decoc tion imp rove the regression of the weasand cartilage cells. Methods: Flow cytometry was used to analyze the apoptosis rate to determine the optimal concentration of Tiaobufeishen decoction and CSE, CCK8 assay was used to dete rmine the op ti mal concent ration of P38-MAPK specific inhibitor. The COPD cell model was created by tracheal chondrocyte which dispose by optimal concent ration CSE, then add the IL-1P set up the chond rocyte degene ration model, use the method of toluidine blue staining and immunohistochemical authenticate degeneration of cartilage. This research included control group, model group, model-Tiaobufeishen group, model-blocker group. When the model was set up succeed, add the Tiaobufeishen decoction and P38-MAPK blocke r in the model-Tiaobufeishen and model-blocke r gr oups, r espectively. Weste rn Blot was used to detect the exp ression of caveolin-1 and p-p38 in the chond rocyte. RT-PCR was used to detect the expression of MMP3 and caveolin-1 in the matrix. Results: The cell activity was not influence by the concentration of Tiaobufeishen decoction and blocker, the concentration of the CSE model was moderation. Compared with control group, the level of caveolin-1, p38MAPK, MMP3 in the model group was significant increase, moreover, the result of toluidine blue staining and immunohistochemical methods show that the chond rocyte has obvious reg ression. The exp ression of caveolin-1, p38MAPK, and MMP3 have significant decrease than the control group, and the reduction of chondrocyte degeneration. Conclusion: The caveolin-1-p38MAPK signaling pathway play an important role in the morbidity of the tracheobronchomalacia. Tiaobufeishen decoction could decrease the exp ression of the caveolin-1, p-p38, MMP3, inhibit the activa tion of the caveolin-1-p38MAPK signaling pathway, therefore, it can improve the tracheobronchomalacia.