期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Palm vein recognition method based on fusion of local Gabor histograms
1
作者 Ma Xin Jing Xiaojun 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第6期55-66,共12页
Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the ... Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the accuracy of palm vein recognition systems. A new local descriptor called local Gabor principal differences patterns (LGPDP) encodes the Gabor magnitude using the local maximum difference (LMD) operator. The corresponding Gabor phase patterns are encoded by local Gabor exclusive OR (XOR) patterns (LGXP). Fisher's linear discriminant (FLD) method is then implemented to reduce the dimensionality of the feature representation. Low-dimensional Gabor magnitude and phase feature vectors are finally fused to enhance accuracy. Experimental results from Institute of Automation, Chinese Academy of sciences (CASIA) database show that the proposed FLGH method achieves better performance by utilizing score-level fusion. The equal error rate (EER) is 0.08%, which outperforms other conventional palm vein recognition methods (EER range from 2.87% to 0.16%), e.g., the Laplacian palm, minutiae feature, Hessian phase, Eigenvein, local invariant features, mutual foreground local binary patterns (LBP), and multi-sampling feature fusion methods. 展开更多
关键词 palm vein recognition Gabor filter local histogram Fisher's linear discriminant
原文传递
People Recognition by RGB and NIR Analysis from Digital Image Database Using Cross-Correlation and Wavelets
2
作者 David Martínez-Martínez Yedid Erandini Niño-Membrillo +3 位作者 José Francisco Solís-Villarreal Oscar Espinoza-Ortega Lizbeth Sandoval-Juárez Francisco Javier Núñez-García 《Engineering(科研)》 2024年第10期353-359,共7页
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ... This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software). 展开更多
关键词 palm vein recognition CROSS-CORRELATION Haar Wavelets Multilayer Perceptron
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部