With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was establis...In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.展开更多
Sampling ports were firstly drilled on a ZGM95 coal mill in the power plant in China, and the coal samples from various points in the pulverizer were collected under the different operation conditions. The prop- erty ...Sampling ports were firstly drilled on a ZGM95 coal mill in the power plant in China, and the coal samples from various points in the pulverizer were collected under the different operation conditions. The prop- erty of the sampling material from the mill was analyzed, applying the float-sink test, size distribution analysis, proximate analysis and so on. It was indicated that the +250 I^m fraction in the pulverized fuel accounted for only 0.02%, while it was 83.2% in the new feed. The circulating ratio and coal flow in the separator and the cone zone were calculated using the mass balance of the circulating load. So, the cir- culating ratio in the separator of the pulverizer was between 8 and 13, and the circulating ratio, the feed flow of separator and cone zone all raised with the increase of the air volume. Furthermore, the parameters of the separation functions were obtained based on the fitting method. It was shown that the mean value of the shape factor B was 0.7617, and the parameter D which is the particle size at 50% cumulative yield in the separator almost kept unchanged.展开更多
In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was perfor...In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was performed in terms of BPA degradation performance.The experimental results demonstrated that nearly 90%of BPA(20 mg l^(-1))in the synthetic wastewater(p H=7.5,σ=10μS m^(-1))was degraded by the plasma catalytic system over 0.2 g l^(-1)graphene/Cd S at 19k V with a 4 l min^(-1)air flow rate and 10 mm electrode gap within 60 min.The BPA removal rate increased with increasing the discharge voltage and decreasing the initial BPA concentration or solution conductivity.Nevertheless,either too high or too low an air flow rate,electrode gap,catalyst dosage or initial solution p H would lead to a decrease in BPA degradation.Moreover,optical emission spectroscopy was used to gain information on short-lived reactive species formed from the pulsed gas–liquid hybrid discharge plasma system.The results indicated the existence of several highly oxidative free radicals such as·O and·OH.Finally,the activation pathway of O_(3)on the catalyst surface was analyzed by density functional theory.展开更多
The extracting process and parameters optimization of Eulaliopsis binata fibers were studied.The components of Eulaliopsis binata were tested,the cellulose contents was about 45%,and the lignin content was as high as ...The extracting process and parameters optimization of Eulaliopsis binata fibers were studied.The components of Eulaliopsis binata were tested,the cellulose contents was about 45%,and the lignin content was as high as 18.5%.And the components of Eulaliopsis binata fibers were compared with some bast fibers.The analysis of physical and chemical properties related to acid,alkali,and auxiliary agent about cellulose and pectin,and lignin components in Eulaliopsis binata fibers were investigated.The chemical processing was employed to extract Eulaliopsis binata fibers in which NaOH as cooking agent and Na5P3O10 as auxiliary agent.The universal rotatable composite experiment design was used to get the highly precise regression equations,in which the NaOH concentration,the auxiliary agent Na5P3O10 concentration and the processing time were the main technological parameters.The residual gum content,fiber fineness,fiber strength,and fiber length of Eulaliopsis binata were the evaluation indexes.Based on the relation among parameters of extracting process,degumming effect and quality indexs of Eulaliopsis binata fibers,the optimum parameters of extracting process on Eulaliopsis binata fibers can be obtained.The fibers extracted from Eulaliopsis binata can be developed as one kind of natural cellulose fibers suitable for producing various textile products.展开更多
Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction pa...Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.展开更多
The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ...The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
By means of the quadratic regression orthogonat combination design, a mathematical model of the relationship between the quality of spot welds and the welding parameters, including welding current, welding time and el...By means of the quadratic regression orthogonat combination design, a mathematical model of the relationship between the quality of spot welds and the welding parameters, including welding current, welding time and electrode force, is established. The influences of welding parameters on long-axis dimension of the nugget and shearing resistance of spot welds are studied and the welding parameters are optimized. The results show that the regression equation obtained can realize the accurate prediction of long-axis dimension of the nugget and shearing resistance of spot welds.展开更多
As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was...As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ...Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
To improve the yield and purity of anthocyanin extracted from blueberry,the characteristics and optimization for the separation and purification process of anthocyanin by AB-8 macroporous adsorbent resin was studied.I...To improve the yield and purity of anthocyanin extracted from blueberry,the characteristics and optimization for the separation and purification process of anthocyanin by AB-8 macroporous adsorbent resin was studied.In the absorption stage,the pH value has positive effect in ranges of 1.0-3.0 and the temperature rise has firstly negative then positive effect on adsorption rate of anthocyanin with adsorption time.In the desorption stage,the ethanol concentration increase has firstly positive then steady effect and the temperature rise has positive and then negative effect on desorption rate of anthocyanin.The purification temperature may improve diffusion or induce degradation of anthocyanin.AB-8 macroporous adsorbent resin is suitable to purify the anthocyanin from extract of powdered blueberries and the optimum parameters were obtained by using Design Expert software as adsorption time of 3 h,pH value of 1.0,adsorption temperature of 18℃ in absorption stage and desorption time of 30 min,ethanol concentration of 46.5%,desorption temperature of 22℃ in desorption stage with the highest absorption rate and desorption rate are 87.65% and 84.80%,respectively.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940...The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factoria...In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.展开更多
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
基金National Natural Science Foundation of China(No.61463015)
文摘In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.
基金The financial support from the Australian Government as Part of the Asia-Pacific Partnership on Clean Development and Climate,and the National Natural Science Foundation of China (Nos. 51074156 and 51274196)
文摘Sampling ports were firstly drilled on a ZGM95 coal mill in the power plant in China, and the coal samples from various points in the pulverizer were collected under the different operation conditions. The prop- erty of the sampling material from the mill was analyzed, applying the float-sink test, size distribution analysis, proximate analysis and so on. It was indicated that the +250 I^m fraction in the pulverized fuel accounted for only 0.02%, while it was 83.2% in the new feed. The circulating ratio and coal flow in the separator and the cone zone were calculated using the mass balance of the circulating load. So, the cir- culating ratio in the separator of the pulverizer was between 8 and 13, and the circulating ratio, the feed flow of separator and cone zone all raised with the increase of the air volume. Furthermore, the parameters of the separation functions were obtained based on the fitting method. It was shown that the mean value of the shape factor B was 0.7617, and the parameter D which is the particle size at 50% cumulative yield in the separator almost kept unchanged.
基金supported by the Open Fund for State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution(No.GHBK-2020-006)National Natural Science Foundation of China(No.21876070)。
文摘In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was performed in terms of BPA degradation performance.The experimental results demonstrated that nearly 90%of BPA(20 mg l^(-1))in the synthetic wastewater(p H=7.5,σ=10μS m^(-1))was degraded by the plasma catalytic system over 0.2 g l^(-1)graphene/Cd S at 19k V with a 4 l min^(-1)air flow rate and 10 mm electrode gap within 60 min.The BPA removal rate increased with increasing the discharge voltage and decreasing the initial BPA concentration or solution conductivity.Nevertheless,either too high or too low an air flow rate,electrode gap,catalyst dosage or initial solution p H would lead to a decrease in BPA degradation.Moreover,optical emission spectroscopy was used to gain information on short-lived reactive species formed from the pulsed gas–liquid hybrid discharge plasma system.The results indicated the existence of several highly oxidative free radicals such as·O and·OH.Finally,the activation pathway of O_(3)on the catalyst surface was analyzed by density functional theory.
基金National Basic Research Program of China(No.2009CB626606)
文摘The extracting process and parameters optimization of Eulaliopsis binata fibers were studied.The components of Eulaliopsis binata were tested,the cellulose contents was about 45%,and the lignin content was as high as 18.5%.And the components of Eulaliopsis binata fibers were compared with some bast fibers.The analysis of physical and chemical properties related to acid,alkali,and auxiliary agent about cellulose and pectin,and lignin components in Eulaliopsis binata fibers were investigated.The chemical processing was employed to extract Eulaliopsis binata fibers in which NaOH as cooking agent and Na5P3O10 as auxiliary agent.The universal rotatable composite experiment design was used to get the highly precise regression equations,in which the NaOH concentration,the auxiliary agent Na5P3O10 concentration and the processing time were the main technological parameters.The residual gum content,fiber fineness,fiber strength,and fiber length of Eulaliopsis binata were the evaluation indexes.Based on the relation among parameters of extracting process,degumming effect and quality indexs of Eulaliopsis binata fibers,the optimum parameters of extracting process on Eulaliopsis binata fibers can be obtained.The fibers extracted from Eulaliopsis binata can be developed as one kind of natural cellulose fibers suitable for producing various textile products.
基金Project(9140A12060110BQ03)supported by the National Key Laboratory of Science and Technology on Materials under Shock and Impact,China
文摘Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.
基金supported by National Natural Science Foundation of China (Grant No. 51005207)Open Foundation of the Mechanical Engineering in Zhejiang University of Technology, China (Grant No.2009EP004)Foundation of Zhejiang Provincial Education Department of China (Grant No. Y200908129)
文摘The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
文摘By means of the quadratic regression orthogonat combination design, a mathematical model of the relationship between the quality of spot welds and the welding parameters, including welding current, welding time and electrode force, is established. The influences of welding parameters on long-axis dimension of the nugget and shearing resistance of spot welds are studied and the welding parameters are optimized. The results show that the regression equation obtained can realize the accurate prediction of long-axis dimension of the nugget and shearing resistance of spot welds.
基金Funded by the National Key Technologies R&D Programs of China (No.2002BA105C)
文摘As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金This study was funded by the Xinjiang Production and Construction Corps Southern Xinjiang Key Industry Support Program Project,Grant Number 2019DB007.
文摘Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.
基金the financial support provided by the Key Project of Science and Technology Research of Heilongjiang Provincial Education Department of China(No:12521z003)for this research project.
文摘To improve the yield and purity of anthocyanin extracted from blueberry,the characteristics and optimization for the separation and purification process of anthocyanin by AB-8 macroporous adsorbent resin was studied.In the absorption stage,the pH value has positive effect in ranges of 1.0-3.0 and the temperature rise has firstly negative then positive effect on adsorption rate of anthocyanin with adsorption time.In the desorption stage,the ethanol concentration increase has firstly positive then steady effect and the temperature rise has positive and then negative effect on desorption rate of anthocyanin.The purification temperature may improve diffusion or induce degradation of anthocyanin.AB-8 macroporous adsorbent resin is suitable to purify the anthocyanin from extract of powdered blueberries and the optimum parameters were obtained by using Design Expert software as adsorption time of 3 h,pH value of 1.0,adsorption temperature of 18℃ in absorption stage and desorption time of 30 min,ethanol concentration of 46.5%,desorption temperature of 22℃ in desorption stage with the highest absorption rate and desorption rate are 87.65% and 84.80%,respectively.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
基金the National Natural Science Foundation of China(Grant No.51464035).
文摘The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
文摘In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.