期刊文献+
共找到6,082篇文章
< 1 2 250 >
每页显示 20 50 100
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
1
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 pls)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES partial least-squares AS
下载PDF
Partial Least Squares(PLS)Methods for Abnormal Detection of Breast Cells
2
作者 Yuchen Zhu Shanxiong Chen +1 位作者 Chunrong Chen Lin Chen 《国际计算机前沿大会会议论文集》 2017年第1期22-24,共3页
Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,s... Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,so it is very important to detect breast cells.In this paper,we built a regression model to detect breast cells,and generated a method for predicting the formation of benign and malignant breast cells by training the model,then we used the 10 features of breast cells to predict it,the results reaching upto 93.67%accuracy,it was very effective to predict and analyse whether the breast cells getting cancer,It had an important role in the diagnosis and prevention of breast cancer. 展开更多
关键词 partial least squares MULTIVARIATE analysis BREAST CANCER Prediction
下载PDF
基于OPLS-DA模型分析不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质
3
作者 葛庆联 刘茵茵 +5 位作者 樊艳凤 马丽娜 贾晓旭 高玉时 周瑶敏 唐修君 《扬州大学学报(农业与生命科学版)》 CAS 北大核心 2024年第4期49-56,共8页
为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squar... 为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。 展开更多
关键词 宁都黄鸡 养殖方式 挥发性物质 正交偏最小二乘-判别分析
下载PDF
基于PLSR和LSSVM模型的土壤水分高光谱反演
4
作者 刘英 范凯旋 +2 位作者 裴为豪 沈文静 葛建华 《矿业安全与环保》 CAS 北大核心 2024年第5期147-153,共7页
为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PL... 为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)构建土壤水分预测模型并验证其预测精度。结果表明,基于一阶变换的PLSR模型和LSSVM模型预测精度相对较好,一阶变换的PLSR模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.7021和0.6405,均方根误差RMSE_(c)和RMSE_(p)分别为1.6384%和1.1034%,相对分析误差RPD_(p)为1.7263;一阶变换的LSSVM模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.8125和0.5979,均方根误差RMSE_(c)和RMSE_(p)分别为1.2755%和1.3459%,相对分析误差RPD_(P)为1.6323。最终基于PLSR和LSSVM模型完成了土壤水分的制图,实现了土壤水分的空间预测,为该研究区植被引导修复中土壤水分精准提升提供了空间数据支持。 展开更多
关键词 土壤含水量 高光谱 偏最小二乘回归 最小二乘支持向量机 无人机 干旱阈值 引导修复
下载PDF
优化光谱指数结合PLSR的多金属矿区土壤As含量高光谱反演 被引量:1
5
作者 周瑶 成永生 +4 位作者 王丹平 张泽文 曾德兴 李向阳 毛春旺 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期653-667,共15页
砷(As)是我国多金属矿区的主要污染物之一,对环境、农业和人类健康构成严重威胁。近地高光谱技术具有快速、动态、无损、光谱分辨率高等优势,对于多金属矿区土壤As污染监测与综合治理具有巨大应用潜力。然而,由于受污染区域、土壤背景... 砷(As)是我国多金属矿区的主要污染物之一,对环境、农业和人类健康构成严重威胁。近地高光谱技术具有快速、动态、无损、光谱分辨率高等优势,对于多金属矿区土壤As污染监测与综合治理具有巨大应用潜力。然而,由于受污染区域、土壤背景以及高光谱质量、光谱输入量等因素影响,高光谱反演模型的适用性和精度差异较大。本研究针对湘南某多金属矿区,基于Pearson相关性分析并结合变量投影重要性(VIP)准则,提取18种变换光谱形式下的单变量特征波段及4种光谱指数算法下的优化光谱指数作为光谱输入量,建立偏最小二乘回归(PLSR)模型,实现了矿区土壤As含量反演。结果表明:倒数(RT)、对数(L)、平方根(Sqrt)、标准正态变量变换二阶导(SNV_SD)等变换后的光谱数据与As含量具有较高的相关性;优化光谱指数能从二维光谱空间揭示As的光谱响应,相较于单变量特征波段,以优化光谱指数为自变量构建的模型性能更优;比值指数(RI)模型的R_(c)^(2)、RMSE_(c)、R_(p)^(2)、RMSE_(p)、RPD分别为0.908、50.8 mg/kg、0.949、35.6 mg/kg、4.45,是研究区土壤As含量反演的最优模型。单变量特征波段结合优化光谱指数预测土壤As含量具有较好的可行性,可为多金属矿区土壤As污染高光谱快速监测提供科学依据。 展开更多
关键词 土壤重金属 高光谱遥感 光谱变换 优化光谱指数 偏最小二乘回归
下载PDF
Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis 被引量:7
6
作者 ZHANG Long WANG Shan-shan +2 位作者 DING Yan-fei PAN Jia-rong ZHU Cheng 《Rice science》 SCIE CSCD 2015年第5期245-249,共5页
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi... Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice. 展开更多
关键词 near infrared reflectance spectroscopy genetically-modified food regulation gene protein gene partial least squares regression discrimiant analysis
下载PDF
Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression 被引量:4
7
作者 LI Cun-jun WANG Ji-hua +4 位作者 WANG Qian WANG Da-cheng SONG Xiao-yu WANG Yan HUANGWen-jiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第9期1445-1452,共8页
Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperatur... Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area. 展开更多
关键词 grain protein content agronomic parameters MULTI-TEMPORAL LANDSAT partial least squares regression
下载PDF
A multivariate partial least squares approach to joint association analysis for multiple correlated traits 被引量:3
8
作者 Yang Xu Wenming Hu +1 位作者 Zefeng Yang Chenwu Xu 《The Crop Journal》 SCIE CAS CSCD 2016年第1期21-29,共9页
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc... Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis. 展开更多
关键词 Association analysis MULTIPLE CORRELATED TRAITS Supersaturated model MULTILOCUS MULTIVARIATE partial least squares
下载PDF
On-Line Batch Process Monitoring Using Multiway Kernel Partial Least Squares 被引量:4
9
作者 胡益 马贺贺 侍洪波 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期585-590,共6页
An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partia... An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring. 展开更多
关键词 process monitoring fault detection kernel partial least squares(Kpls) nonlinear process multiway kernel partial least squares(MKpls)
下载PDF
Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares 被引量:5
10
作者 Lei Yu Yuliang Liang +1 位作者 Yizhuo Zhang Jun Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第3期1053-1060,共8页
This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to... This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE. 展开更多
关键词 MODULUS of RUPTURE MODULUS of ELASTICITY Near-infrared CORRELATION LOCAL EMBEDDING partial least square
下载PDF
基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演
11
作者 王宇 汪泓 +4 位作者 肖玖军 邢丹 李可相 张永亮 岳延滨 《江苏农业学报》 CSCD 北大核心 2024年第5期865-873,共9页
为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据... 为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据集,再用遗传算法-偏最小二乘法(GAPLS)进行降维得到最优特征波段组合,采用偏最小二乘法(PLSR)、反向传播神经网络(BPNN)、随机森林(RF)和最小二乘支持向量机(LSSVM)4种机器学习算法构建辣椒叶绿素含量反演模型。结果表明,最优波段和对应处理分别为700 nm(原始光谱)、699 nm(对数处理)、713 nm(连续统去除处理)、500 nm(二阶微分处理)、713 nm(二阶微分处理)。GAPLS的降维效果较好,与降维前相比PLSR模型的精度提升率最高,R^(2)、RPD分别提升了82.22%、136.98%,RMSE降低了29.96%。4种模型中,GAPLS降维处理后的PLSR模型的精度最好,R^(2)、RMSE和RPD分别为0.82、1.94、4.55。本研究构建的MCC-GAPLS-PLSR模型具有较好的反演潜力,适用于研究区辣椒叶片叶绿素含量测定,推动辣椒高效种植。 展开更多
关键词 叶绿素含量 辣椒 高光谱 光谱变换 遗传算法-偏最小二乘法
下载PDF
NO_x emission model for coal-fired boilers using partial least squares and extreme learning machine 被引量:4
12
作者 Dong Ze Ma Ning Li Changqing 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期179-184,共6页
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ... To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models. 展开更多
关键词 NOx emission partial least squares extreme learning machine coal-fired boiler
下载PDF
Chaotic time series multi-step direct prediction with partial least squares regression 被引量:2
13
作者 Liu Zunxiong Liu Jianhui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期611-615,共5页
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var... Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure. 展开更多
关键词 chaotic series prediction multi-step local model partial least squares.
下载PDF
Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands 被引量:4
14
作者 Bin Yang Lijun Yao Tao Pan 《Engineering(科研)》 2017年第2期181-189,共9页
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t... The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 IDENTIFICATION of LIQUOR Brands NEAR-INFRARED Spectroscopy partial least squares DISCRIMINANT ANALYSIS Principal Component Linear DISCRIMINANT ANALYSIS
下载PDF
Local Partial Least Squares Based Online Soft Sensing Method for Multi-output Processes with Adaptive Process States Division 被引量:3
15
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期828-836,共9页
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin... Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects. 展开更多
关键词 Local learning Online soft sensing partial least squares F-TEST Multi-output process Process state division
下载PDF
Quantitative structure-property relationship study of the solubility of thiazolidine-4-carboxylic acid derivatives using ab initio and genetic algorithm-partial least squares 被引量:1
16
作者 Ali Niazi Saeed Jameh-Bozorghi Davood Nori-Shargh 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第5期621-624,共4页
A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calcul... A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively. 展开更多
关键词 Ab initio partial least squares Genetic algorithm SOLUBILITY THIAZOLIDINE
下载PDF
Penalized total least squares method for dealing with systematic errors in partial EIV model and its precision estimation 被引量:3
17
作者 Leyang Wang Luyun Xiong Tao Chen 《Geodesy and Geodynamics》 CSCD 2021年第4期249-257,共9页
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ... When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method. 展开更多
关键词 partial EIV model Systematic errors Nonlinear model Penalized total least squares criterion U curve method
下载PDF
基于PCA-HCA联合PLS回归模型的蚯蚓粪肥品质等级划分
18
作者 王孔檀 麦力文 +6 位作者 王定美 彭实亮 王熊飞 蒙赜 余小兰 林嘉聪 李勤奋 《中国土壤与肥料》 CAS CSCD 北大核心 2024年第8期198-210,共13页
蚯蚓粪肥理化特性涉及指标多,如何从众多易检测的指标中筛选出能够反映蚯蚓粪肥特点的关键指标,进而用于构建评价模型,高效、快速地评价蚯蚓粪肥的品质等级,是蚯蚓粪肥应用前亟需解决的重要问题与难点。研究针对不同原料类型、不同蚯蚓... 蚯蚓粪肥理化特性涉及指标多,如何从众多易检测的指标中筛选出能够反映蚯蚓粪肥特点的关键指标,进而用于构建评价模型,高效、快速地评价蚯蚓粪肥的品质等级,是蚯蚓粪肥应用前亟需解决的重要问题与难点。研究针对不同原料类型、不同蚯蚓堆肥时间获得的蚯蚓粪肥,采用统计学与化学计量学对蚯蚓粪肥23个主要指标开展描述统计与相关分析,筛选出了13个蚯蚓粪肥特异性指标。以13个关键指标为基础,首先,结合主成分分析(PCA)与分层聚类分析(HCA)对不同蚯蚓粪肥样品开展品质初级划分;其次,采用偏最小二乘回归(PLS)-判别分析(DA)对分级结果进行效果判定;最后,整体构建基于PLS模型的蚯蚓粪肥等级评价方法并开展验证分析。结果表明:PCA与HCA分析法可将蚯蚓粪肥划分为3个品质等级,通过PLS-DA判别该划分结果合理有效,形成了基于PLS蚯蚓粪肥等级评价模型:蚯蚓粪肥品质等级(Y)=3.0796+0.0026×TOC-0.1381×HS-0.1446×HA-0.1378×TN-0.1355×TP-0.1494×AK-0.1324×AN-0.1402×AP+0.0004×EOC+0.03985×ROC+0.07685×C/N-0.0049×Kos-0.1481×HI(TOC、HS、HA、TN、TP、AK、AN、AP、EOC、ROC、C/N、Kos、HI分别代表总有机碳、腐殖质碳、胡敏酸、总氮、总磷、速效钾、碱解氮、有效磷、易氧化有机碳、难氧化有机碳、碳氮比、氧化稳定系数、腐殖化指数),分级标准为:若Y在0.45~1.56之间,品质等级为一等品;Y在1.63~2.20之间,为二等品;Y在2.28~3.72之间,为三等品。变量权重值表明影响蚯蚓粪肥品质前5的关键指标顺序为HI>TN>HS>HA>AN。研究成功建立了一套“PCA+HCA+PLS”的蚯蚓粪肥品质评价方法,对蚯蚓粪肥分级应用与规范蚯蚓产业市场具有重要意义。 展开更多
关键词 蚯蚓粪肥 等级评价 主成分分析 分层聚类分析 偏最小二乘回归分析
下载PDF
Simultaneous Spectrophotometric Determination of Three Components Including Deoxyschizandrin by Partial Least Squares Regression 被引量:1
19
作者 张立庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期119-121,共3页
The computer auxiliary partial least squares is introduced to simultaneously determine the contents of Deoxyschizandin, Schisandrin, r-Schisandrin in the extracted solution of wuweizi. Regression analysis of the exper... The computer auxiliary partial least squares is introduced to simultaneously determine the contents of Deoxyschizandin, Schisandrin, r-Schisandrin in the extracted solution of wuweizi. Regression analysis of the experimental results shows that the average recovery of each component is all in the range from 98.9% to 110.3% , which means the partial least squares regression spectrophotometry can circumvent the overlappirtg of absorption spectrums of mlulti-components, so that sctisfactory results can be obtained without any scrapple pre-separation. 展开更多
关键词 DEOXYSCHIZANDRIN partial least squares regression spectrophotometry simultaneous determination
下载PDF
Characteristic wavelength selection of volatile organic compounds infrared spectra based on improved interval partial least squares 被引量:2
20
作者 Wei Ju Changhua Lu +4 位作者 Yujun Zhang Weiwei Jiang Jizhou Wang Yi Bing Lu Feng Hong 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第2期35-53,共19页
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys... As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths. 展开更多
关键词 Ambient air monitoring Fourier transform infrared spectra analysis variable selection interval partial least square Monte-Carlo sampling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部