The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational param...The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational parameter. A 14L sequencing batch reactor was operated at 23℃ for 8 months, with an input of domestic wastewater. There was a prolgrammed decrease of the airflow rate to 28L·h^-1, the corresponding average dissolved oxygen (DO) was 0.32mg·h^-1, and the average nitrite accumulation rate increased to 92.4% in 3 weeks. Subsequently, further increase in the airflow rate to 48L·h^-1 did not destroy the partial nitrification to nitrite, with average DO of 0.60mg·h^-1 and nitrite accumulating rate of 95.6%. The results showed that limited airflow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate and that this system showed relatively stability at higher airflow rate independent of pH and temperature. About 50% of influent total nitrogen was eliminated coupling with partial nitrification, taking the advantage of low DO during the reaction.展开更多
[Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) u...[Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) under intermittent aeration, the influences of various concentrations of influent ammonia nitrogen on nitrous oxide (N2O) emission from partial nitrification were analyzed. [Result] When the concentration of influent ammonia nitrogen varied from 200 to 400 mg/L, the changing trends of DO and ORP value were consistent during the process of partial nitrification, and the concentration ratio of NO-2-N to NH+4-N in effluent water reached 1∶1, with lower NO-3-N level. In addition, ammonia nitrogen concentration in the influent had significant effects on N2O emission in the process of partial nitrification, that is, the higher the ammonia nitrogen concentration, the more the N2O emission. When ammonia nitrogen concentration was 400 mg/L, N2O emission was up to about 37 mg. [Conclusion] N2O emission in the process of partial nitrification might be related to the concentrations of NH+4 and NO-2.展开更多
One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this t...One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.展开更多
Partial nitrification is a key aspect of efficient nitrogen removal,although practically it suf-fers from long start-up cycles and unstable long-term operational performance.To address these drawbacks,this study inves...Partial nitrification is a key aspect of efficient nitrogen removal,although practically it suf-fers from long start-up cycles and unstable long-term operational performance.To address these drawbacks,this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine(NH2OH)on the performance of partial nitrification.Results showthat compared with the control group,low-intensity ultrasound treatment(0.10W/mL,15 min)combined with NH2OH(5 mg/L)reduced the time required for partial nitrification initiation by 6 days,increasing the nitrite accumulation rate(NAR)and ammonia nitro-gen removal rate(NRR)by 20.4% and 6.7%,respectively,achieving 96.48% NRR.Mechanis-tic analysis showed that NH2OH enhanced ammonia oxidation,inhibited nitrite-oxidizing bacteria(NOB)activity and shortened the time required for partial nitrification initiation.Furthermore,ultrasonication combined with NH2OH dosing stimulated EPS(extracellular polymeric substances)secretion,increased carbonyl,hydroxyl and amine functional group abundances and enhanced mass transfer.In addition,16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound+NH_(2)OH system,while Nitrosomonas gradually became the dominant group.Collectively,the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.展开更多
基金Supported by Funding Project for Academic Human Resources Development in Institutions of Higher Leading under the Juris-diction of Beijing Municipality [PHR(IHLB)], the National Natural Science Foundation of China (No.50478040)the Na-tional Key Technologies R&D Program of China (No.2006BAC19B03).
文摘The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational parameter. A 14L sequencing batch reactor was operated at 23℃ for 8 months, with an input of domestic wastewater. There was a prolgrammed decrease of the airflow rate to 28L·h^-1, the corresponding average dissolved oxygen (DO) was 0.32mg·h^-1, and the average nitrite accumulation rate increased to 92.4% in 3 weeks. Subsequently, further increase in the airflow rate to 48L·h^-1 did not destroy the partial nitrification to nitrite, with average DO of 0.60mg·h^-1 and nitrite accumulating rate of 95.6%. The results showed that limited airflow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate and that this system showed relatively stability at higher airflow rate independent of pH and temperature. About 50% of influent total nitrogen was eliminated coupling with partial nitrification, taking the advantage of low DO during the reaction.
基金Supported by National Scientific Project of Water Pollution Control and Management(2008ZX07209-006,2009ZX07210-009)
文摘[Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) under intermittent aeration, the influences of various concentrations of influent ammonia nitrogen on nitrous oxide (N2O) emission from partial nitrification were analyzed. [Result] When the concentration of influent ammonia nitrogen varied from 200 to 400 mg/L, the changing trends of DO and ORP value were consistent during the process of partial nitrification, and the concentration ratio of NO-2-N to NH+4-N in effluent water reached 1∶1, with lower NO-3-N level. In addition, ammonia nitrogen concentration in the influent had significant effects on N2O emission in the process of partial nitrification, that is, the higher the ammonia nitrogen concentration, the more the N2O emission. When ammonia nitrogen concentration was 400 mg/L, N2O emission was up to about 37 mg. [Conclusion] N2O emission in the process of partial nitrification might be related to the concentrations of NH+4 and NO-2.
基金supported by the National Natural Science Foundation of China(Nos.52070153,52200175)the Key Research and Development Program of Shaanxi,China(No.2023-YBSF-283)。
文摘One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
文摘Partial nitrification is a key aspect of efficient nitrogen removal,although practically it suf-fers from long start-up cycles and unstable long-term operational performance.To address these drawbacks,this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine(NH2OH)on the performance of partial nitrification.Results showthat compared with the control group,low-intensity ultrasound treatment(0.10W/mL,15 min)combined with NH2OH(5 mg/L)reduced the time required for partial nitrification initiation by 6 days,increasing the nitrite accumulation rate(NAR)and ammonia nitro-gen removal rate(NRR)by 20.4% and 6.7%,respectively,achieving 96.48% NRR.Mechanis-tic analysis showed that NH2OH enhanced ammonia oxidation,inhibited nitrite-oxidizing bacteria(NOB)activity and shortened the time required for partial nitrification initiation.Furthermore,ultrasonication combined with NH2OH dosing stimulated EPS(extracellular polymeric substances)secretion,increased carbonyl,hydroxyl and amine functional group abundances and enhanced mass transfer.In addition,16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound+NH_(2)OH system,while Nitrosomonas gradually became the dominant group.Collectively,the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.