期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Adaptive delay-energy balanced partial offloading strategy in Mobile Edge Computing networks 被引量:1
1
作者 Shumei Liu Yao Yu +3 位作者 Lei Guo Phee Lep Yeoh Branka Vucetic Yonghui Li 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1310-1318,共9页
Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased re... Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes. 展开更多
关键词 Mobile edge computing(MEC) DELAY Energy consumption Dynamic balance partial computation offloading
下载PDF
Mobility-Aware Partial Computation Offloading in Vehicular Networks: A Deep Reinforcement Learning Based Scheme 被引量:8
2
作者 Jianfei Wang Tiejun Lv +1 位作者 Pingmu Huang P.Takis Mathiopoulos 《China Communications》 SCIE CSCD 2020年第10期31-49,共19页
Encouraged by next-generation networks and autonomous vehicle systems,vehicular networks must employ advanced technologies to guarantee personal safety,reduce traffic accidents and ease traffic jams.By leveraging the ... Encouraged by next-generation networks and autonomous vehicle systems,vehicular networks must employ advanced technologies to guarantee personal safety,reduce traffic accidents and ease traffic jams.By leveraging the computing ability at the network edge,multi-access edge computing(MEC)is a promising technique to tackle such challenges.Compared to traditional full offloading,partial offloading offers more flexibility in the perspective of application as well as deployment of such systems.Hence,in this paper,we investigate the application of partial computing offloading in-vehicle networks.In particular,by analyzing the structure of many emerging applications,e.g.,AR and online games,we convert the application structure into a sequential multi-component model.Focusing on shortening the application execution delay,we extend the optimization problem from the single-vehicle computing offloading(SVCOP)scenario to the multi-vehicle computing offloading(MVCOP)by taking multiple constraints into account.A deep reinforcement learning(DRL)based algorithm is proposed as a solution to this problem.Various performance evaluation results have shown that the proposed algorithm achieves superior performance as compared to existing offloading mechanisms in deducing application execution delay. 展开更多
关键词 partial offloading MEC fog computing vehicular networks D2D AR
下载PDF
Deep Reinforcement Learning Based Joint Partial Computation Offloading and Resource Allocation in Mobility-Aware MEC System 被引量:3
3
作者 Luyao Wang Guanglin Zhang 《China Communications》 SCIE CSCD 2022年第8期85-99,共15页
Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing... Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks. 展开更多
关键词 mobile edge computing energy harvesting device-mobility partial computation offloading resource allocation deep reinforcement learning
下载PDF
A New Partial Task Offloading Method in a Cooperation Mode under Multi-Constraints for Multi-UE
4
作者 Shengyao Sun Ying Du +3 位作者 Jiajun Chen Xuan Zhang Jiwei Zhang Yiyi Xu 《Computers, Materials & Continua》 SCIE EI 2023年第9期2879-2900,共22页
In Multi-access Edge Computing(MEC),to deal with multiple user equipment(UE)’s task offloading problem of parallel relationships under the multi-constraints,this paper proposes a cooperation partial task offloading m... In Multi-access Edge Computing(MEC),to deal with multiple user equipment(UE)’s task offloading problem of parallel relationships under the multi-constraints,this paper proposes a cooperation partial task offloading method(named CPMM),aiming to reduce UE’s energy and computation consumption,while meeting the task completion delay as much as possible.CPMM first studies the task offloading of single-UE and then considers the task offloading ofmulti-UE based on single-UE task offloading.CPMMuses the critical path algorithmto divide the modules into key and non-key modules.According to some constraints of UE-self when offloading tasks,it gives priority to non-key modules for offloading and uses the evaluation decision method to select some appropriate key modules for offloading.Based on fully considering the competition between multiple UEs for communication resources and MEC service resources,CPMM uses the weighted queuing method to alleviate the competition for communication resources and uses the branch decision algorithm to determine the location of module offloading by BS according to the MEC servers’resources.It achieves its goal by selecting reasonable modules to offload and using the cooperation ofUE,MEC,andCloudCenter to determine the execution location of themodules.Extensive experiments demonstrate that CPMM obtains superior performances in task computation consumption reducing around 6%on average,task completion delay reducing around 5%on average,and better task execution success rate than other similar methods. 展开更多
关键词 MEC partial task offloading parallel dependencies completion delay
下载PDF
Adaptive Partial Task Offloading and Virtual Resource Placement in SDN/NFV-Based Network Softwarization
5
作者 Prohim Tam Sa Math Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2141-2154,共14页
Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control... Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics. 展开更多
关键词 Deep learning partial task offloading software-defined networking virtual machine virtual network functions
下载PDF
Secure Computation Efficiency Resource Allocation for Massive MIMO-Enabled Mobile Edge Computing Networks
6
作者 Sun Gangcan Sun Jiwei +3 位作者 Hao Wanming Zhu Zhengyu Ji Xiang Zhou Yiqing 《China Communications》 SCIE CSCD 2024年第11期150-162,共13页
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ... In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes. 展开更多
关键词 EAVESDROPPING massive multiple input multiple output mobile edge computing partial offloading secure computation efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部