The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, par...The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume(%vol.), normal diesel oil(4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted(or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
This work studies the amount of gaseous and particle emissions and deposits on heat exchanger surfaces in a boiler firedwith commercially available pellets and with pellets primed with magnesium oxide and magnesium hy...This work studies the amount of gaseous and particle emissions and deposits on heat exchanger surfaces in a boiler firedwith commercially available pellets and with pellets primed with magnesium oxide and magnesium hydroxide.The combustionexperiments were performed on a residential boiler of 20 kW.Substrates placed in the heat exchanger was analysed with SEM-EDX-mapping to evaluate the chemical composition of the deposits.The results show that particle emissions(PM 2.5)using the additivesincreased by about 50%and the mass of the deposits in the flue gas heat exchanger(excluding loose fly ash)increased by about25%compared to the combustion of pellets without additives.The amount of additives was found to be eight times higher than theamount of the main alkali metals potassium(K)and sodium(Na)which leads to the assumption that the additives were overdosedand therefore caused the problems reported.The SEM analysis of the substrates placed in the flue gas heat exchanger indicate that thedeposits of sodium(Na),potassium(K),chlorine(Cl)and sulphur(S)decrease using the additives.If this was due to theexpected chemical reactions or due to the loose fly ash covering the substrates after the test,could not be determined in this study.展开更多
According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, th...According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.展开更多
On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (...On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (SEP) event in Solar Cycle 24. Two successive coronal mass ejections (CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, but the second one was not involved. Using velocity dispersion analysis (VDA), we find that for a well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B (STB) for protons and electrons have a distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and STB. Also, the VDA method seems to only obtain reasonable results at well-connected locations and the inferred release times of energetic particles in different energy channels are similar. We suggest that good-connection is crucial for obtaining both an accurate release time and path length simultaneously, agreeing with the modeling result of Wang & Qin (2015).展开更多
The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions...The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions were measured at different speeds, different loads and ESC cycles. The nanoparticles with diameter smaller than 39 nm, measured by the electrical low-pressure impactor (ELPI), are dominant in number con- centration that is nearly 92.7 % of the total number of the emitted particles at the peak point. As for the mass of emission particle, it is shown that the mass of the particles greater than 1.2μm is more than 65 % that of the emitted particles.展开更多
Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC ...Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.展开更多
The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation i...The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation in tens of nanometers had been observed. The current-voltage(I-V) curve of the sample indicates its nonlinear electrical characters expecting the corresponding nonlinear optical properties. By the theoretical calculation, nonlinear conduction of the carrier transportation may result from the barrier-well-barrier structure, where negative resistance and Coulomb blockade effect appears. The simulation results are approximately matched with the experimental results. By testing the fluorescence emission spectrum of the sample, peaks were found to be located at 420 and 440 nm. In addition, the full width at half maximum(FWHM) had been obviously broadened by means of adding 2, 5-diphenyloxazole(DPO). Therefore, discrete energy levels could be estimated inside those particles.展开更多
Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP e...Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP events, such as TO, the onset time from CME launch to SEP onset, TR, the rise time from onset to half the peak intensity (0.5/p), and TD, the duration of the SEP intensity above 0.5Ip. In this work, we solve the transport equation for SEPs considering interplanetary coronal mass ejection (ICME) shocks as energetic particle sources. With our modeling assumptions, our simulations show similar results to Kahler's analysis of spacecraft data, that the weighted average of TD increases with both CME speed and width. Moreover, from our simulation results, we suggest TD is directly dependent on CME speed, but not dependent on CME width, which were not found in the analysis of observational data.展开更多
The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculation...The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculations show that the magnitude of shell effects in the emission of particles changes with the neutron-to-proton ratio N/Z of these fissioning nuclei, and this change is affected significantly by the spin and excitation energy of the system. It is shown that high angular momentum enhances the dependence of shell effects on the N/Z while high excitation energy weakens such a dependence.展开更多
Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and ind...Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.展开更多
On 2017 September 10,a fast coronal mass ejection(CME)erupted from the active region(AR)12673,leading to a ground level enhancement(GLE)event at Earth.Using the 2D improved Particle Acceleration and Transport in the H...On 2017 September 10,a fast coronal mass ejection(CME)erupted from the active region(AR)12673,leading to a ground level enhancement(GLE)event at Earth.Using the 2D improved Particle Acceleration and Transport in the Heliosphere(iPATH)model,we model the large solar energetic particle(SEP)event of 2017 September 10 observed at Earth,Mars and STEREO-A.Based on observational evidence,we assume that the CME-driven shock experienced a large lateral expansion shortly after the eruption,which is modeled by a double Gaussian velocity profile in this simulation.We apply the in-situ shock arrival times and the observed CME speeds at multiple spacecraft near Earth and Mars as constraints to adjust the input model parameters.The modeled time intensity profiles and fluence for energetic protons are then compared with observations.Reasonable agreements with observations at Mars and STEREO-A are found.The simulated results at Earth differ from observations of GOES-15.However,the simulated results at a heliocentric longitude 20°west to Earth fit reasonably well with the GOES observation.This can be explained if the pre-event solar wind magnetic field at Earth is not described by a nominal Parker field.Our results suggest that a large lateral expansion of the CME-driven shock and a distorted interplanetary magnetic field due to previous events can be important in understanding this GLE event.展开更多
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the ...Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.展开更多
The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which...The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.展开更多
To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 1...To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.展开更多
The results obtained from the research on the behaviour of fences (solid and porous) in the protection against particulated material emission to the atmosphere from open storage piles,are presented. This research was ...The results obtained from the research on the behaviour of fences (solid and porous) in the protection against particulated material emission to the atmosphere from open storage piles,are presented. This research was carried out through computational fluid dynamics (CFD) simulation by software Ansys CFX-10.0 in 3D,with K-epsilon being considered in the turbulence model. The efficiency of the use of porous fences as a protection against the wind flow,which interacts with an open storage pile,is shown. The use of these fences (when porosity is ε=30%) allows the reduction of wind flow velocity which interacts with the pile in comparison with the case of no use of fences (when porosity is 100%). In addition,the use of porous fences makes the velocity vortex,which is formed between the solid fence (ε=0%) and the pile,disappear,reducing the particle emission to the atmosphere by 78%.展开更多
The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross s...The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.展开更多
To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, ...To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.展开更多
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). ...Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.展开更多
Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is n...Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r - 0.79) between the hard X-ray (HXR) spectral index (before flarepeak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r - 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r - 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics.展开更多
基金Angpanneföreningen’s Foundation for Research and Development(11-164)the Foundation for Swedish Environmental Research Institute(SIVL)Swedish Maritime Organization and Lighthouse for their financial support
文摘The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume(%vol.), normal diesel oil(4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted(or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金performed within the project SWX-Energi and financed by the European UnionRegion Dalarna+1 种基金Region Gvleborgand Dalarna University
文摘This work studies the amount of gaseous and particle emissions and deposits on heat exchanger surfaces in a boiler firedwith commercially available pellets and with pellets primed with magnesium oxide and magnesium hydroxide.The combustionexperiments were performed on a residential boiler of 20 kW.Substrates placed in the heat exchanger was analysed with SEM-EDX-mapping to evaluate the chemical composition of the deposits.The results show that particle emissions(PM 2.5)using the additivesincreased by about 50%and the mass of the deposits in the flue gas heat exchanger(excluding loose fly ash)increased by about25%compared to the combustion of pellets without additives.The amount of additives was found to be eight times higher than theamount of the main alkali metals potassium(K)and sodium(Na)which leads to the assumption that the additives were overdosedand therefore caused the problems reported.The SEM analysis of the substrates placed in the flue gas heat exchanger indicate that thedeposits of sodium(Na),potassium(K),chlorine(Cl)and sulphur(S)decrease using the additives.If this was due to theexpected chemical reactions or due to the loose fly ash covering the substrates after the test,could not be determined in this study.
基金funded by the National Natural Science Foundation of China(Grant Nos.41674166,41074132,41274193 and 41304144)the National Standard Research Program(Grant 200710123)
文摘According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.
基金supported at NUIST by the National Natural Science Foundation of China(NSFC)-41304150 for Ding L.G.at CMA by NSFC-41274193 and 41474166 for Le G.M
文摘On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (SEP) event in Solar Cycle 24. Two successive coronal mass ejections (CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, but the second one was not involved. Using velocity dispersion analysis (VDA), we find that for a well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B (STB) for protons and electrons have a distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and STB. Also, the VDA method seems to only obtain reasonable results at well-connected locations and the inferred release times of energetic particles in different energy channels are similar. We suggest that good-connection is crucial for obtaining both an accurate release time and path length simultaneously, agreeing with the modeling result of Wang & Qin (2015).
文摘The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions were measured at different speeds, different loads and ESC cycles. The nanoparticles with diameter smaller than 39 nm, measured by the electrical low-pressure impactor (ELPI), are dominant in number con- centration that is nearly 92.7 % of the total number of the emitted particles at the peak point. As for the mass of emission particle, it is shown that the mass of the particles greater than 1.2μm is more than 65 % that of the emitted particles.
文摘Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.
基金Supported by the 973 Program(No.2014CB932103)the 863 Program(No.2013AA032501)the National Natural Science Foundation of China(NSFC No.21676015)
文摘The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation in tens of nanometers had been observed. The current-voltage(I-V) curve of the sample indicates its nonlinear electrical characters expecting the corresponding nonlinear optical properties. By the theoretical calculation, nonlinear conduction of the carrier transportation may result from the barrier-well-barrier structure, where negative resistance and Coulomb blockade effect appears. The simulation results are approximately matched with the experimental results. By testing the fluorescence emission spectrum of the sample, peaks were found to be located at 420 and 440 nm. In addition, the full width at half maximum(FWHM) had been obviously broadened by means of adding 2, 5-diphenyloxazole(DPO). Therefore, discrete energy levels could be estimated inside those particles.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.41304135,41574172,41374177 and 41125016)the CMA(Grant GYHY201106011)the Specialized Research Fund for State Key Laboratories of China
文摘Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP events, such as TO, the onset time from CME launch to SEP onset, TR, the rise time from onset to half the peak intensity (0.5/p), and TD, the duration of the SEP intensity above 0.5Ip. In this work, we solve the transport equation for SEPs considering interplanetary coronal mass ejection (ICME) shocks as energetic particle sources. With our modeling assumptions, our simulations show similar results to Kahler's analysis of spacecraft data, that the weighted average of TD increases with both CME speed and width. Moreover, from our simulation results, we suggest TD is directly dependent on CME speed, but not dependent on CME width, which were not found in the analysis of observational data.
基金国家自然科学基金,Teaching and Researching Foundation for the Excellent Teachers of Southeast University
文摘The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculations show that the magnitude of shell effects in the emission of particles changes with the neutron-to-proton ratio N/Z of these fissioning nuclei, and this change is affected significantly by the spin and excitation energy of the system. It is shown that high angular momentum enhances the dependence of shell effects on the N/Z while high excitation energy weakens such a dependence.
基金financial support received from Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT)
文摘Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.
基金NASA grants NNX17AI17G,80NSSC19K0075 and 80NSSC19K0629。
文摘On 2017 September 10,a fast coronal mass ejection(CME)erupted from the active region(AR)12673,leading to a ground level enhancement(GLE)event at Earth.Using the 2D improved Particle Acceleration and Transport in the Heliosphere(iPATH)model,we model the large solar energetic particle(SEP)event of 2017 September 10 observed at Earth,Mars and STEREO-A.Based on observational evidence,we assume that the CME-driven shock experienced a large lateral expansion shortly after the eruption,which is modeled by a double Gaussian velocity profile in this simulation.We apply the in-situ shock arrival times and the observed CME speeds at multiple spacecraft near Earth and Mars as constraints to adjust the input model parameters.The modeled time intensity profiles and fluence for energetic protons are then compared with observations.Reasonable agreements with observations at Mars and STEREO-A are found.The simulated results at Earth differ from observations of GOES-15.However,the simulated results at a heliocentric longitude 20°west to Earth fit reasonably well with the GOES observation.This can be explained if the pre-event solar wind magnetic field at Earth is not described by a nominal Parker field.Our results suggest that a large lateral expansion of the CME-driven shock and a distorted interplanetary magnetic field due to previous events can be important in understanding this GLE event.
基金supported by a SUPA Advanced Fellowship (Hamish Reid)the European Research Council under the SeismoSun Research Project No. 321141 (Heather Ratcliffe)the Marie Curie PIRSESGA- 2011-295272 RadioSun project
文摘Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.40904046,40874075 and 40525014)the 973 National Basic Research Program(2006CB806304)+2 种基金the Ministry of Education of China(200530)the Program for New Century Excellent Talents in University(NCET-08-0524)the Chinese Academy of Sciences(KZCX2-YW-QN511, KJCX2-YW-N28 and the startup fund)
文摘The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.
基金funded by the National Basic Research Program of China (973 Program,Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grant Nos.41074132,41274193,41474166,41304144,11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.
基金the Spanish Ministry of Science and Education that granted these researches through the project CTM2005-00187/TECNO "Prediction Models and Prevention Systems in the Particle Atmospheric Pollution in an Industrial Environment" carried out at Oviedo University
文摘The results obtained from the research on the behaviour of fences (solid and porous) in the protection against particulated material emission to the atmosphere from open storage piles,are presented. This research was carried out through computational fluid dynamics (CFD) simulation by software Ansys CFX-10.0 in 3D,with K-epsilon being considered in the turbulence model. The efficiency of the use of porous fences as a protection against the wind flow,which interacts with an open storage pile,is shown. The use of these fences (when porosity is ε=30%) allows the reduction of wind flow velocity which interacts with the pile in comparison with the case of no use of fences (when porosity is 100%). In addition,the use of porous fences makes the velocity vortex,which is formed between the solid fence (ε=0%) and the pile,disappear,reducing the particle emission to the atmosphere by 78%.
文摘The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.
基金jointly funded by the National Basic Research Program of China (973 Program, Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grants 41074132, 41274193, 41474166, 41304144, 11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.
文摘Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.
基金the CAWSES-India Program, supported by the Indian Space Research Organization (ISRO), Dept. of Space, Govt. of India
文摘Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r - 0.79) between the hard X-ray (HXR) spectral index (before flarepeak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r - 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r - 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics.