期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
BERRY-ESSEEN BOUNDS OF ERROR VARIANCE ESTIMATION IN PARTLY LINEAR MODELS 被引量:1
1
作者 高集体 洪圣岩 梁华 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第4期477-490,共14页
Consider the regression model Y i=x τ iβ+g(t i)+ε i for i=1,…, n. Here (x i, t i) are known and nonrandom design points and ε i are i.i.d. random errors.The family of nonparametric estimates n(·) of g(·... Consider the regression model Y i=x τ iβ+g(t i)+ε i for i=1,…, n. Here (x i, t i) are known and nonrandom design points and ε i are i.i.d. random errors.The family of nonparametric estimates n(·) of g(·) including some known estimates is proposed. Based on the model Y i=x τ i+ n(t i)+ε i, the Berry-Esseen bounds of the distribution of the least-squares estimator of β are investigated. 展开更多
关键词 partly linear model Least-squares estimate Berry-Esseen bounds
原文传递
THE RATES OF CONVERGENCE OF M-ESTIMATORS FOR PARTLY LINEAR MODELS IN DEPENDENT CASES
2
作者 SHIPEIDE CHENXIRU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第3期301-316,共16页
Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &v... Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &vector of parameters, X is a &vector of explanatory variables,Ti is another explanatory variable ranging over a nondegenerate compact interval. Bnd ona segmnt of observations (T1, Xi 1 Y1 ),’’’ f (Tn, X;, Yn), this article investigates the rates ofconvrgence of the M-estimators for Po and go obtained from the minimisation problemwhere H is a space of B-spline functions of order m + 1 and p(-) is a function chosen suitablyUnder some regularity conditions, it is shown that the estimator of go achieves the optimalglobal rate of convergence of estimators for nonparametric regression, and the estdriator offo is asymptotically normal. The M-estimators here include regression quantile estimators,Li-estimators, Lp-norm estimators, Huber’s type M-estimators and usual least squares estimators. Applications of the asymptotic theory to testing the hypothesis H0: A’β0 =β are alsodiscussed, where β is a given vector and A is a known d × do matrix with rank d0. 展开更多
关键词 partly linear model M-ESTIMATOR L_1-norm estimator B-SPLINE Optimal rate of convergence Strictly stationary sequence β-mixing
原文传递
Asymptotic Normality of Pseudo-LS Estimator of Error Variance in Partly Linear Autoregressive Models
3
作者 WU Xin-qian TIAN Zheng JU Yan-wei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第4期617-622,共6页
Consider the model Yt = βYt-1+g(Yt-2)+εt for 3 〈 t 〈 T. Hereg is anunknown function, β is an unknown parameter, εt are i.i.d, random errors with mean 0 andvariance σ2 and the fourth moment α4, and α4 are ... Consider the model Yt = βYt-1+g(Yt-2)+εt for 3 〈 t 〈 T. Hereg is anunknown function, β is an unknown parameter, εt are i.i.d, random errors with mean 0 andvariance σ2 and the fourth moment α4, and α4 are independent of Y8 for all t ≥ 3 and s = 1, 2.Pseudo-LS estimators σ, σ2T α4τ and D2T of σ^2,α4 and Var(ε2↑3) are respectively constructedbased on piecewise polynomial approximator of g. The weak consistency of α4T and D2T are proved. The asymptotic normality of σ2T is given, i.e., √T(σ2T -σ^2)/DT converges indistribution to N(0, 1). The result can be used to establish large sample interval estimatesof σ^2 or to make large sample tests for σ^2. 展开更多
关键词 partly linear autoregressive model error variance piecewise polynomial pseudo-LS estimation weak consistency asymptotic normality
下载PDF
Uniform Convergence Rate of Estimators of Autocovariances in Partly Linear Regression Models with Correlated Errors
4
作者 Jin-hongYou GemaiChen +1 位作者 MinChen ue-leiJiang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第3期363-370,共8页
Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1<... Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1</SUB>, ··· , &#946; <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {&#949; <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of &#946;, we construct estimators of the autocovariances of {&#949; <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {&#949; <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process. 展开更多
关键词 Uniform strong convergence rate autocovariance and autocorrelation B-spline estimation correlated error partly linear regression model
原文传递
Asymptotics for partly linear regression with dependent samples and ARCH errors:consistency with rates 被引量:3
5
作者 卢祖帝 I.Gijbels 《Science China Mathematics》 SCIE 2001年第2期168-183,共16页
Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of th... Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of the regression components are constructed via local polynomial fitting and the large sample properties are explored. Under certain mild regularities, the conditions are obtained to ensure that the estimators of the nonparametric component and its derivatives are consistent up to the convergence rates which are optimal in the i.i.d. case, and the estimator of the parametric component is root-n consistent with the same rate as for parametric model. The technique adopted in the proof differs from that used and corrects the errors in the reference by Hamilton and Truong under i.i.d. samples. 展开更多
关键词 ARCH (GARCH) errors dependent samples local polynomial fitting convergence rates partly linear model root-n consistency
原文传递
Efficient Estimation for Semiparametric Varying-Coefficient Partially Linear Regression Models with Current Status Data
6
作者 Tao Hu Heng-jian Cui Xing-wei Tong 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期195-204,共10页
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalizatio... This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach. 展开更多
关键词 partly linear model varying-coefficient current status data asymptotically efficient estimator sieve MLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部