As one of the soil microorganisms, bacillus pasteurii exhibits good urease-produ-cing ability. A novel method is used to prepare BaCO3 crystals by the induction of bacillus pasteurii. The crystals have been characteri...As one of the soil microorganisms, bacillus pasteurii exhibits good urease-produ-cing ability. A novel method is used to prepare BaCO3 crystals by the induction of bacillus pasteurii. The crystals have been characterized by XRD, SEM and FT-IR. X-ray diffraction analysis quantified that the BaCO3 crystals obtained belong to the orthorhombic crystal system. Examination by scanning electron microscopy identified that the BaCO3 crystals have different morphologies under different preparation conditions. FT-IR indicated that surfactant EDTA had great effect on the morphology of BaCO3 crystals. Different morphology crystals had uniform distribution and integral shape. The forming mechanism and influence of EDTA on the morphology of BaCO3 crystals have been discussed.展开更多
This research was carried out to evaluate the relationship between the incorporation of calcite precipitation bacteria,sporosarcina pasteurii using calcium lactate as nutrient source and the properties of calcined cla...This research was carried out to evaluate the relationship between the incorporation of calcite precipitation bacteria,sporosarcina pasteurii using calcium lactate as nutrient source and the properties of calcined clay and limestone powder blended self-compacting concrete.Ten mixes were designed and designated S0 to S9 with S0 the control(without bacteria and nutrient)and S1 to S9 at varying bacteria and calcium lactate concentrations and the effect of the bacteria cell density and calcium lactate concentration on the compressive strength,sorptivity and tensile strength with age were evaluated using experimental program and statistical packages(ANOVA and post hoc tests).The result of both the experimental program and statistical evaluation shows that the incorporation of sporosarcina pasteurii and calcium lactate as nutrients had a positive impact on the properties of the ternary blended self-compacting concrete.展开更多
Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to ...Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to achieve efficient curing,which has become the bottleneck of large-scale field application.This paper reviews the research status,hot spots,difficulties and future development direction microbial induced calcium carbonate precipitation(MICP)technology.The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized.The solidification efficiency is mainly affected by the reactant itself and the external environment.At present,the MICP technology has been preliminarily applied in the fields of soil solidification,crack repair,anti-seepage treatment,pollution repair and microbial cement.However,the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization,uneconomical reactants,short microbial activity period and large environmental interference,incidental toxicity of metabolites and poor field application.Future directions include improving the uniformity of mineralization by improving grouting methods,improving urease persistence by improving urease activity,and improving the adaptability of bacteria to the environment by optimizing bacterial species.Finally,the authors point out the economic advantages of combining soybean peptone,soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.展开更多
文摘As one of the soil microorganisms, bacillus pasteurii exhibits good urease-produ-cing ability. A novel method is used to prepare BaCO3 crystals by the induction of bacillus pasteurii. The crystals have been characterized by XRD, SEM and FT-IR. X-ray diffraction analysis quantified that the BaCO3 crystals obtained belong to the orthorhombic crystal system. Examination by scanning electron microscopy identified that the BaCO3 crystals have different morphologies under different preparation conditions. FT-IR indicated that surfactant EDTA had great effect on the morphology of BaCO3 crystals. Different morphology crystals had uniform distribution and integral shape. The forming mechanism and influence of EDTA on the morphology of BaCO3 crystals have been discussed.
文摘This research was carried out to evaluate the relationship between the incorporation of calcite precipitation bacteria,sporosarcina pasteurii using calcium lactate as nutrient source and the properties of calcined clay and limestone powder blended self-compacting concrete.Ten mixes were designed and designated S0 to S9 with S0 the control(without bacteria and nutrient)and S1 to S9 at varying bacteria and calcium lactate concentrations and the effect of the bacteria cell density and calcium lactate concentration on the compressive strength,sorptivity and tensile strength with age were evaluated using experimental program and statistical packages(ANOVA and post hoc tests).The result of both the experimental program and statistical evaluation shows that the incorporation of sporosarcina pasteurii and calcium lactate as nutrients had a positive impact on the properties of the ternary blended self-compacting concrete.
基金This work was financed by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)the Key Research and Development Plan of Yunnan Province(Grant No.202103AA080013).
文摘Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to achieve efficient curing,which has become the bottleneck of large-scale field application.This paper reviews the research status,hot spots,difficulties and future development direction microbial induced calcium carbonate precipitation(MICP)technology.The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized.The solidification efficiency is mainly affected by the reactant itself and the external environment.At present,the MICP technology has been preliminarily applied in the fields of soil solidification,crack repair,anti-seepage treatment,pollution repair and microbial cement.However,the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization,uneconomical reactants,short microbial activity period and large environmental interference,incidental toxicity of metabolites and poor field application.Future directions include improving the uniformity of mineralization by improving grouting methods,improving urease persistence by improving urease activity,and improving the adaptability of bacteria to the environment by optimizing bacterial species.Finally,the authors point out the economic advantages of combining soybean peptone,soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.