The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice ...The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice constants required were obtained by numerical calculation instead of using standard sample without any fault. The influence of internal stress on the determined a has been evaluated, and the caused relative error was determined as about 4% and thus negligible. The results show that the deformation fault probability increases with decreasing Mn-content and increasing cycle number, which are qualitatively consistent with those results of Psf determined by peak-broadening method.展开更多
基金The present work was financially supported by the Advanced Materials Center Foundation of Shanghai, China (No. 99JC14019).
文摘The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice constants required were obtained by numerical calculation instead of using standard sample without any fault. The influence of internal stress on the determined a has been evaluated, and the caused relative error was determined as about 4% and thus negligible. The results show that the deformation fault probability increases with decreasing Mn-content and increasing cycle number, which are qualitatively consistent with those results of Psf determined by peak-broadening method.