Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),thi...Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.展开更多
This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG dat...This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.展开更多
In the blockchain,the consensus mechanism plays a key role in maintaining the security and legitimation of contents recorded in the blocks.Various blockchain consensus mechanisms have been proposed.However,there is no...In the blockchain,the consensus mechanism plays a key role in maintaining the security and legitimation of contents recorded in the blocks.Various blockchain consensus mechanisms have been proposed.However,there is no technical analysis and comparison as a guideline to determine which type of consensus mechanism should be adopted in a specific scenario/application.To this end,this work investigates three mainstream consensus mechanisms in the blockchain,namely,Proof of Work(PoW),Proof of Stake(PoS),and Direct Acyclic Graph(DAG),and identifies their performances in terms of the average time to generate a new block,the confirmation delay,the Transaction Per Second(TPS)and the confirmation failure probability.The results show that the consensus process is affected by both network resource(computation power/coin age,buffer size)and network load conditions.In addition,it shows that PoW and PoS are more sensitive to the change of network resource while DAG is more sensitive to network load conditions.展开更多
Dramatically increasing amounts of digital data are placing huge requirements on storage systems.IP-networked storage systems, such as the network file system (NFS)-based network-attached storage (NAS) systems and...Dramatically increasing amounts of digital data are placing huge requirements on storage systems.IP-networked storage systems, such as the network file system (NFS)-based network-attached storage (NAS) systems and the iSCSl-storage area network (SAN) systems, have become increasingly common in today's local area network (LAN) environments. The emergence of new storage techniques, such as object-based storage (OBS) and content aware storage (CAS), significantly improves the functionality of storage devices to meet further needs for storage sub-systems. However, these may impact system performance. This papercompares the performance of NFS, iSCSI storage, object-based storage devices (OSDs), and CAS-based storage systems in an environment with no data sharing across host machines. A gigabit ethernet network is used as the storage network. Test results demonstrate that the performances of these systems are compa- rable with CAS being much better than the others for write operations. The performance bottlenecks in these systems are analyzed to provide insight into how future storage systems may be improved and possible optimization methods. The analysis shows how the I/O interfaces in these systems affect the application performance and that network-based storage systems require optimized I/O latency and reduced network and buffer processing in the servers.展开更多
The Counting Bloom Filter (CBF) is a kind of space-efficient data structure that extends a Bloom filter so as to allow approximate multiplicity queries on a dynamic multi-set. This paper evaluates the performance of...The Counting Bloom Filter (CBF) is a kind of space-efficient data structure that extends a Bloom filter so as to allow approximate multiplicity queries on a dynamic multi-set. This paper evaluates the performance of multiplicity queries of three simple CBF schemes-the Naive Counting Bloom Filter (NCBF), the Space-Code Bloom Filter (SCBF) and the d-left Counting Bloom Filter (dlCBF)-using metrics of space complexity and counting error under both uniform and zipfian multiplicity distributions. We compare their counting error under same space complexity, and their space complexity when similar counting errors are achieved respectively. Our results show that dICBF is the best while SCBF is the worst in terms of both space-efficiency and accuracy. Furthermore, the performance gap between dlCBF and the others has a trend of being enlarged with the increment of space occupation or counting accuracy.展开更多
In this paper, we compare the throughput and delay performance between the full-duplex and half-duplex CSMA/CD EPON systems by theoretical derivation and simulation. We conclude that it's preferable to implement t...In this paper, we compare the throughput and delay performance between the full-duplex and half-duplex CSMA/CD EPON systems by theoretical derivation and simulation. We conclude that it's preferable to implement the full-duplex system.展开更多
The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio sign...The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.展开更多
Internally-cooled dehumidifiers are efficient liquid desiccant dehumidifiers, whose performance is mainly determined by the device structure and operating conditions. Based on energy and mass conservation in the air, ...Internally-cooled dehumidifiers are efficient liquid desiccant dehumidifiers, whose performance is mainly determined by the device structure and operating conditions. Based on energy and mass conservation in the air, solution, and cooling water in the device, mathematical models are built and their theoretical performance is simulated and analyzed in this paper. A novel measure of dehumidification efficiency is introduced to evaluate the performance of internally-cooled dehumidifiers, in which the equilibrium humidity ratio of the inlet solution is calculated according to the minimum temperature in the inlet solution and the cooling water. Numerical simulations show that a counter flow between air and solution is always the most efficient, followed by cross flow, and parallel flow is the least efficient. Cooling water with the same flow direction as the solution performs better than that with a counter flow, with approximately a 5% improvement in efficiency. Compared with Ca Cl2, the dehumidification efficiency of a Li Cl solution is greater by 60%, while its exergy efficiency is less by 16%. Dehumidification efficiency can be improved with the number of air-solution heat transfer units(NTUa-s) increasing, and reduced with the air mass flow rate raised. With NTUa-s increasing, exergy efficiency can be improved, and an increase in mass flow rate of cooling water results in a decrease of efficiency. Higher solution concentration and lower inlet temperature of solution and air can achieve both higher dehumidification efficiency and exergy efficiency.展开更多
Performances of belite-rich Portland cement, or HBC (high belite cement), and the resultant concrete are introduced by comparing with that of alite based PC (Portland cement) and concrete. The comparison study of ...Performances of belite-rich Portland cement, or HBC (high belite cement), and the resultant concrete are introduced by comparing with that of alite based PC (Portland cement) and concrete. The comparison study of cement properties indicates that HBC possesses the properties of less water demand for normal consistency, better compatibility with water reducer, higher later age strength after 28-day under standard curing temperature of 20 ℃, unique strength gain under elevated curing temperatures of 38-70 ℃, lower hydration heat evolution and temperature rise, lower drying shrinkage and excellent resistance to sulphate attack. These results have been demonstrated by the comparison performance evaluation of concretes prepared by HBC and PC in terms of workability, physical mechanical properties and durability when making high performance high strength concrete and massive concrete.展开更多
The implementation of the coordinate rotational digital computer (CORDIC) algorithm with wave pipelining technique on field programmable gate array (FPGA) is described. All data in FPGA-based wave pipelining pass ...The implementation of the coordinate rotational digital computer (CORDIC) algorithm with wave pipelining technique on field programmable gate array (FPGA) is described. All data in FPGA-based wave pipelining pass through a number of logic gates, in the same way that all data pass through the same number of registers in a conventional pipeline. Moreover, all paths are routed using identical routing resources. The manual placement, timing driven routing and timing analyzing techniques are applied to optimize the layout for achieving good path balance. Experimental results show that a 256-LUT logic depth circuit mapped on XC4VLX15-12 runs as high as 330 MHz, whichis a little lower than the speed of 336 MHz based on the conventional 16-stage pipelining in the same chip. The latency of the wave pipelining circuit is 30.3 ns, which is 36.4% shorter than the latency of 16-stage conventional pipelining circuit.展开更多
In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construct...In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construction in which segments are equipped with concentrated windings to form the stator.However,the AFMG machine has two rotors with different pole-pair numbers.Magnetic gear effect can be obtained to increase the torque density.The performance comparisons at no-load and on-load conditions are then studied by 3D-finite element analysis(FEM).Moreover,both machines are prototyped,tested and compared.展开更多
With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitut...With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.展开更多
In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cy...In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cycles(TRECs)is put forward.Considering the main electrochemically and thermodynamically irreversible losses,the power output and the efficiency of the subsystems and the integrated system are compared,and optimally operating regions for the current density,the power output,and the efficiency of the integrated system are explored.Calculations demonstrate that the maximum power density of the considered system is up to 7466 W/m2,which allows 18%and 74%higher than that of the conventional SOFC-AMTEC device and the stand-alone fuel cell model,respectively.It is proved that the considered system is an efficient approach to boost energy efficiency.Moreover,the influence of several significant parameters on the comprehensive performance of the integrated system is expounded in detail,including the electrolyte thickness of the SOFC,the leakage resistance of the SOFC,and the area ratio between the SOFC electrode and the AMTEC subsystem.展开更多
Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithm...Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithms. Qualitative performance and time complexity are the main issues. In this paper, we propose a technique for constant modulus signals applying basic non-negative matrix factorization (BNMF) in blind adaptive beamforming environment. We compared the existing Unscented Kalman Filter based Constant Modulus Algorithm (UKF-CMA) with proposed NMF-UKF-CMA algorithm. We see there is a better improvement of sensor array gain, signal to interference plus noise ratio (SINR) and mean squared deviation (MSD) as the noise variance and the array size increase with reduced computational complexity with the UKF-CMA.展开更多
Because of the impact of global warming,the Earth’s ecosystems are currently at a critical stage.The European building sector,and the residential element in particular,is responsible for the largest portion of energy...Because of the impact of global warming,the Earth’s ecosystems are currently at a critical stage.The European building sector,and the residential element in particular,is responsible for the largest portion of energy enduse.Although we know how to build a perfectly engineered house,it will not work properly if its inhabitants do not know how to run it.“Well-educated”dwellers can really improve energy use.The aim of this research is to optimize the users’role in the energy reduction process,analysing as a case study,Dwell!,the monitoring system designed for“RhOME for denCity”,the housing prototype developed by Roma Tre University and winner of the“Solar Decathlon Europe”competition in 2014.展开更多
A series of bionic grooves based on bird wing, such as cluster spiral groove, multi-array spiral groove and flow-split spiral groove, are introduced to improve the film stiffness and sealing properties of dry gas seal...A series of bionic grooves based on bird wing, such as cluster spiral groove, multi-array spiral groove and flow-split spiral groove, are introduced to improve the film stiffness and sealing properties of dry gas seal. A theoretical model solved with Finite Difference Method (FMD) is developed to study the static sealing performance, such as film stiffness and leakage rate of these bionic groove dry gas seals. Then, a performance comparative study between the bionic groove dry gas seals and common spiral groove dry gas seal with different groove geometry parameters such as groove depth ratio, spiral angle and micro groove number under different average linear velocity at seal ring face and seal pressure is carried out. The closing force, film thickness and leakage rate of dry gas seals with bionic grooves and common spiral groove are measured experimentally. Results show that cluster spiral groove and multi-array spiral groove dry gas seals have superiority in the film stiffness and stiffness-leakage ratio compared with common spiral groove under the condition of high-speed and low-pressure, while flow-split spiral groove dry gas seal has no obvious advantages of performance. Film stiffness of cluster spiral groove dry gas seal and stiffness-leakage ratio of multi-array spiral groove dry gas are 20% and 50% larger than that of common spiral groove dry gas seal, respectively, which are verified by the experimental results.展开更多
Cloud computing, after its success as a commercial infrastructure, is now emerging as a private infrastructure. The software platforms available to build private cloud computing infrastructure vary in their performanc...Cloud computing, after its success as a commercial infrastructure, is now emerging as a private infrastructure. The software platforms available to build private cloud computing infrastructure vary in their performance for management of cloud resources as well as in utilization of local physical resources. Organizations and individuals looking forward to reaping the benefits of private cloud computing need to understand which software platform would provide the efficient services and optimum utilization of cloud resources for their target applications. In this paper, we present our initial study on performance evaluation and comparison of three cloud computing software platforms from the perspective of common cloud users who intend to build their private clouds. We compare the performance of the selected software platforms from several respects describing their suitability for applications from different domains. Our results highlight the critical parameters for performance evaluation of a software platform and the best software platform for different application domains.展开更多
Beijing and Shenzhen are both well known for their high-tech industries. This paper compares the financial performance of the two cities' technology firms and explores the effects of the firms' operating characteris...Beijing and Shenzhen are both well known for their high-tech industries. This paper compares the financial performance of the two cities' technology firms and explores the effects of the firms' operating characteristics and strategy choices on their performance. We find that when comparable samples are used, the firms in Beijing performed better than those in Shenzhen. In addition, for firms both in Beijing and Shenzhen, the ratio of current asset to total asset had a significantly positive effect while both short-term and long-term debt-asset ratios had a significantly negative effect on the performance. The strategy variable sales expenses as a fraction of the cost of goods sold had a significantly positive effect on the performance of firms in Beijing, but the positive effect on firms in Shenzhen was not significant. R&D inputs contributed significantly to the pre-tax profitability of Beijing firms, but bad no significant effect whatsoever on Shenzhen firms.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181)。
文摘Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.
文摘This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.
基金the National Natural Science Foundation of China under Grant 61701059,Grant 61941114,and Grant 61831002,in part by the Fundamental Research Funds for the Central Universities of New TeachersProject,in part by the Chongqing Technological Innovation and Application Development Projects under Grant cstc2019jscx-msxm1322,and in part by the Eighteentg Open Foundation of State Key Lab of Integrated Services Networks of Xidian University under Grant ISN20-05.
文摘In the blockchain,the consensus mechanism plays a key role in maintaining the security and legitimation of contents recorded in the blocks.Various blockchain consensus mechanisms have been proposed.However,there is no technical analysis and comparison as a guideline to determine which type of consensus mechanism should be adopted in a specific scenario/application.To this end,this work investigates three mainstream consensus mechanisms in the blockchain,namely,Proof of Work(PoW),Proof of Stake(PoS),and Direct Acyclic Graph(DAG),and identifies their performances in terms of the average time to generate a new block,the confirmation delay,the Transaction Per Second(TPS)and the confirmation failure probability.The results show that the consensus process is affected by both network resource(computation power/coin age,buffer size)and network load conditions.In addition,it shows that PoW and PoS are more sensitive to the change of network resource while DAG is more sensitive to network load conditions.
基金Supported by the National Natural Science Foundation of China(No. 60273006)the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology(TNList)
文摘Dramatically increasing amounts of digital data are placing huge requirements on storage systems.IP-networked storage systems, such as the network file system (NFS)-based network-attached storage (NAS) systems and the iSCSl-storage area network (SAN) systems, have become increasingly common in today's local area network (LAN) environments. The emergence of new storage techniques, such as object-based storage (OBS) and content aware storage (CAS), significantly improves the functionality of storage devices to meet further needs for storage sub-systems. However, these may impact system performance. This papercompares the performance of NFS, iSCSI storage, object-based storage devices (OSDs), and CAS-based storage systems in an environment with no data sharing across host machines. A gigabit ethernet network is used as the storage network. Test results demonstrate that the performances of these systems are compa- rable with CAS being much better than the others for write operations. The performance bottlenecks in these systems are analyzed to provide insight into how future storage systems may be improved and possible optimization methods. The analysis shows how the I/O interfaces in these systems affect the application performance and that network-based storage systems require optimized I/O latency and reduced network and buffer processing in the servers.
基金Supported by the National Grand Fundamental Research 973 Program of China (No.2007CB307100, No.2007CB 307102)
文摘The Counting Bloom Filter (CBF) is a kind of space-efficient data structure that extends a Bloom filter so as to allow approximate multiplicity queries on a dynamic multi-set. This paper evaluates the performance of multiplicity queries of three simple CBF schemes-the Naive Counting Bloom Filter (NCBF), the Space-Code Bloom Filter (SCBF) and the d-left Counting Bloom Filter (dlCBF)-using metrics of space complexity and counting error under both uniform and zipfian multiplicity distributions. We compare their counting error under same space complexity, and their space complexity when similar counting errors are achieved respectively. Our results show that dICBF is the best while SCBF is the worst in terms of both space-efficiency and accuracy. Furthermore, the performance gap between dlCBF and the others has a trend of being enlarged with the increment of space occupation or counting accuracy.
文摘In this paper, we compare the throughput and delay performance between the full-duplex and half-duplex CSMA/CD EPON systems by theoretical derivation and simulation. We conclude that it's preferable to implement the full-duplex system.
基金supported by Fundacao para a Cienciae a Tecnologia from Portugal under contract SFRH/BD/29871/2006 the project TURBO-PTDC/EEA-TEL/104358/2008supported in part by the European FIVER-FP7-ICT-2009-4-249142 project
文摘The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.
基金Project supported by the National Natural Science Foundation of China(No.51766010)the Knowledge Innovative Team of High-efficient Refrigeration in Nanchang City of China(No.2018-CXTD-004)+2 种基金the Special Fund Project for Graduate Innovation of Nanchang University(No.CX2018058)the Zhihui Zhengzhou 1125 Talent Gathering Plan Innovation and Entrepreneurship Leading Teamthe Study Plan for Young and Middle-aged Teachers in Nanchang University,China
文摘Internally-cooled dehumidifiers are efficient liquid desiccant dehumidifiers, whose performance is mainly determined by the device structure and operating conditions. Based on energy and mass conservation in the air, solution, and cooling water in the device, mathematical models are built and their theoretical performance is simulated and analyzed in this paper. A novel measure of dehumidification efficiency is introduced to evaluate the performance of internally-cooled dehumidifiers, in which the equilibrium humidity ratio of the inlet solution is calculated according to the minimum temperature in the inlet solution and the cooling water. Numerical simulations show that a counter flow between air and solution is always the most efficient, followed by cross flow, and parallel flow is the least efficient. Cooling water with the same flow direction as the solution performs better than that with a counter flow, with approximately a 5% improvement in efficiency. Compared with Ca Cl2, the dehumidification efficiency of a Li Cl solution is greater by 60%, while its exergy efficiency is less by 16%. Dehumidification efficiency can be improved with the number of air-solution heat transfer units(NTUa-s) increasing, and reduced with the air mass flow rate raised. With NTUa-s increasing, exergy efficiency can be improved, and an increase in mass flow rate of cooling water results in a decrease of efficiency. Higher solution concentration and lower inlet temperature of solution and air can achieve both higher dehumidification efficiency and exergy efficiency.
文摘Performances of belite-rich Portland cement, or HBC (high belite cement), and the resultant concrete are introduced by comparing with that of alite based PC (Portland cement) and concrete. The comparison study of cement properties indicates that HBC possesses the properties of less water demand for normal consistency, better compatibility with water reducer, higher later age strength after 28-day under standard curing temperature of 20 ℃, unique strength gain under elevated curing temperatures of 38-70 ℃, lower hydration heat evolution and temperature rise, lower drying shrinkage and excellent resistance to sulphate attack. These results have been demonstrated by the comparison performance evaluation of concretes prepared by HBC and PC in terms of workability, physical mechanical properties and durability when making high performance high strength concrete and massive concrete.
文摘The implementation of the coordinate rotational digital computer (CORDIC) algorithm with wave pipelining technique on field programmable gate array (FPGA) is described. All data in FPGA-based wave pipelining pass through a number of logic gates, in the same way that all data pass through the same number of registers in a conventional pipeline. Moreover, all paths are routed using identical routing resources. The manual placement, timing driven routing and timing analyzing techniques are applied to optimize the layout for achieving good path balance. Experimental results show that a 256-LUT logic depth circuit mapped on XC4VLX15-12 runs as high as 330 MHz, whichis a little lower than the speed of 336 MHz based on the conventional 16-stage pipelining in the same chip. The latency of the wave pipelining circuit is 30.3 ns, which is 36.4% shorter than the latency of 16-stage conventional pipelining circuit.
文摘In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construction in which segments are equipped with concentrated windings to form the stator.However,the AFMG machine has two rotors with different pole-pair numbers.Magnetic gear effect can be obtained to increase the torque density.The performance comparisons at no-load and on-load conditions are then studied by 3D-finite element analysis(FEM).Moreover,both machines are prototyped,tested and compared.
基金supported by theKorea Institute of Energy Technology Evaluationand Planning (KETEP) grant funded by the Korean Government (MOTIE) (No. 20202020900060,The development and application of operational technology in smart farm utilizing waste heat fromparticulates reduced smokestack).
文摘With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.
文摘In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cycles(TRECs)is put forward.Considering the main electrochemically and thermodynamically irreversible losses,the power output and the efficiency of the subsystems and the integrated system are compared,and optimally operating regions for the current density,the power output,and the efficiency of the integrated system are explored.Calculations demonstrate that the maximum power density of the considered system is up to 7466 W/m2,which allows 18%and 74%higher than that of the conventional SOFC-AMTEC device and the stand-alone fuel cell model,respectively.It is proved that the considered system is an efficient approach to boost energy efficiency.Moreover,the influence of several significant parameters on the comprehensive performance of the integrated system is expounded in detail,including the electrolyte thickness of the SOFC,the leakage resistance of the SOFC,and the area ratio between the SOFC electrode and the AMTEC subsystem.
文摘Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithms. Qualitative performance and time complexity are the main issues. In this paper, we propose a technique for constant modulus signals applying basic non-negative matrix factorization (BNMF) in blind adaptive beamforming environment. We compared the existing Unscented Kalman Filter based Constant Modulus Algorithm (UKF-CMA) with proposed NMF-UKF-CMA algorithm. We see there is a better improvement of sensor array gain, signal to interference plus noise ratio (SINR) and mean squared deviation (MSD) as the noise variance and the array size increase with reduced computational complexity with the UKF-CMA.
文摘Because of the impact of global warming,the Earth’s ecosystems are currently at a critical stage.The European building sector,and the residential element in particular,is responsible for the largest portion of energy enduse.Although we know how to build a perfectly engineered house,it will not work properly if its inhabitants do not know how to run it.“Well-educated”dwellers can really improve energy use.The aim of this research is to optimize the users’role in the energy reduction process,analysing as a case study,Dwell!,the monitoring system designed for“RhOME for denCity”,the housing prototype developed by Roma Tre University and winner of the“Solar Decathlon Europe”competition in 2014.
基金Acknowledgment The research is financially support by The National Key Basic Research Development Plan (973 Plan, 2014CB046404), National Nature Science Foundation of China (51575490) and Key Program of Zhejiang Provincial Natural Science Fund Project (LZ15E050002).
文摘A series of bionic grooves based on bird wing, such as cluster spiral groove, multi-array spiral groove and flow-split spiral groove, are introduced to improve the film stiffness and sealing properties of dry gas seal. A theoretical model solved with Finite Difference Method (FMD) is developed to study the static sealing performance, such as film stiffness and leakage rate of these bionic groove dry gas seals. Then, a performance comparative study between the bionic groove dry gas seals and common spiral groove dry gas seal with different groove geometry parameters such as groove depth ratio, spiral angle and micro groove number under different average linear velocity at seal ring face and seal pressure is carried out. The closing force, film thickness and leakage rate of dry gas seals with bionic grooves and common spiral groove are measured experimentally. Results show that cluster spiral groove and multi-array spiral groove dry gas seals have superiority in the film stiffness and stiffness-leakage ratio compared with common spiral groove under the condition of high-speed and low-pressure, while flow-split spiral groove dry gas seal has no obvious advantages of performance. Film stiffness of cluster spiral groove dry gas seal and stiffness-leakage ratio of multi-array spiral groove dry gas are 20% and 50% larger than that of common spiral groove dry gas seal, respectively, which are verified by the experimental results.
文摘Cloud computing, after its success as a commercial infrastructure, is now emerging as a private infrastructure. The software platforms available to build private cloud computing infrastructure vary in their performance for management of cloud resources as well as in utilization of local physical resources. Organizations and individuals looking forward to reaping the benefits of private cloud computing need to understand which software platform would provide the efficient services and optimum utilization of cloud resources for their target applications. In this paper, we present our initial study on performance evaluation and comparison of three cloud computing software platforms from the perspective of common cloud users who intend to build their private clouds. We compare the performance of the selected software platforms from several respects describing their suitability for applications from different domains. Our results highlight the critical parameters for performance evaluation of a software platform and the best software platform for different application domains.
文摘Beijing and Shenzhen are both well known for their high-tech industries. This paper compares the financial performance of the two cities' technology firms and explores the effects of the firms' operating characteristics and strategy choices on their performance. We find that when comparable samples are used, the firms in Beijing performed better than those in Shenzhen. In addition, for firms both in Beijing and Shenzhen, the ratio of current asset to total asset had a significantly positive effect while both short-term and long-term debt-asset ratios had a significantly negative effect on the performance. The strategy variable sales expenses as a fraction of the cost of goods sold had a significantly positive effect on the performance of firms in Beijing, but the positive effect on firms in Shenzhen was not significant. R&D inputs contributed significantly to the pre-tax profitability of Beijing firms, but bad no significant effect whatsoever on Shenzhen firms.