To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By...To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By analyzing information transmission regularity and EPA deterministic scheduling mechanism,periodic messages were categorized as different modes according to their entering-queue time.The scheduling characteristics and delivery time of each mode and their interacting relations were studied,during which the models of real-time performance of periodic information transmission in EPA system were established.On this basis,an experimental platform is developed to test the delivery time of periodic messages transmission in EPA system.According to the analysis and the experiment,the main factors that limit the real-time performance of EPA periodic data transmission and the improvement methods were proposed.展开更多
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by several serotypes of hantavirus and 90% of all reported HFRS cases occur in China. However, the dynamics of such outbreak, particularl...Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by several serotypes of hantavirus and 90% of all reported HFRS cases occur in China. However, the dynamics of such outbreak, particularly the characteristics of two distinct annual peaks in China, are not well understood. Here, we investigate several of the biologically plausible causes for the peaks in monthly HFRS cases, and find that the key factor is the interplay between periodic transmission rates and rodent periodic birth rate. Analysis of dynamicM model reveals that vaccination plays a significant role in the control of HFRS in China. Sensitive analysis of different interventions demonstrates that integrating rodent culling and environmental management with the current vaccination program is effective for HFRS control. Our results suggest that for diseases from animals to human beings, the features of both animals and humans beings should be taken into account in the control and prevention strategies.展开更多
基金Supported by the National High Technology Research and Development Program of China (2006AA040301-4,2007AA041301-6)
文摘To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By analyzing information transmission regularity and EPA deterministic scheduling mechanism,periodic messages were categorized as different modes according to their entering-queue time.The scheduling characteristics and delivery time of each mode and their interacting relations were studied,during which the models of real-time performance of periodic information transmission in EPA system were established.On this basis,an experimental platform is developed to test the delivery time of periodic messages transmission in EPA system.According to the analysis and the experiment,the main factors that limit the real-time performance of EPA periodic data transmission and the improvement methods were proposed.
文摘Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by several serotypes of hantavirus and 90% of all reported HFRS cases occur in China. However, the dynamics of such outbreak, particularly the characteristics of two distinct annual peaks in China, are not well understood. Here, we investigate several of the biologically plausible causes for the peaks in monthly HFRS cases, and find that the key factor is the interplay between periodic transmission rates and rodent periodic birth rate. Analysis of dynamicM model reveals that vaccination plays a significant role in the control of HFRS in China. Sensitive analysis of different interventions demonstrates that integrating rodent culling and environmental management with the current vaccination program is effective for HFRS control. Our results suggest that for diseases from animals to human beings, the features of both animals and humans beings should be taken into account in the control and prevention strategies.