The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti...The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
This study aimed to investigate the performance evolution characteristics of concrete under permafrost ambient temperatures and to explore methods to mitigate the thermal perturbation by concrete on the permafrost env...This study aimed to investigate the performance evolution characteristics of concrete under permafrost ambient temperatures and to explore methods to mitigate the thermal perturbation by concrete on the permafrost environment.A program was designed to investigate the properties of various concretes at three curing conditions.The compressive strength development pattern of each group was evaluated and the concrete's performance was characterized by compressive strength damage degree,hydration temperature and SEM analysis in a low temperature environment.The experimental results show that the incorporation of fly ash alone or incombination with other admixtures in concrete under low-temperature curing does not deteriorate its microstructure,and at the same time,it can slow down the hydration rate of cement and significantly reduce the exothermic heat of hydration of concrete.These findings are expected to provide valuable references for the proportioning design of concrete in permafrost environments.展开更多
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap...During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.展开更多
Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this re...Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change.展开更多
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec...Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.展开更多
The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm...The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
Knowledge of glacier changes and associated hazards is of great importance for the safety consideration of the population and infrastructure in the mountainous regions of Upper Indus Basin(UIB).In this study,we assess...Knowledge of glacier changes and associated hazards is of great importance for the safety consideration of the population and infrastructure in the mountainous regions of Upper Indus Basin(UIB).In this study,we assessed the variations in glacier velocity,glacier surface elevation change,meteorological conditions,and permafrost distribution in Badswat and Shishkat catchments located in UIB to access the potential impact on the occurrence of debris flow in both catchments.We find that the glacier surface velocity increased during the debris flow event in the Badswat catchment and the mean daily temperature was 3.7℃to 3.9℃higher in most of the locations.The enhanced glacier surface elevation lowering period coincide with the rise in temperature during spring and autumn months between 2015 to 2019 in Badswat catchment.The source region of debris flow falls within the lower boundary of permafrost occurrence zone and lies below the 0℃isotherm during late spring and summer months.In Shishkat catchment the 0℃isotherm reaches above the debris flow source area during August and the glacier do not show any significant variations in velocity and surface elevation change.The debris flow source area is adjacent to the slow-moving rock glacier in Shishkat catchment while in Badswat catchment the debris flow initiated from the former glacier moraine.Both catchments are largely glacierized and thus sensitive to changes in climatic conditions and changes in the cryosphere response possess significant threats to the population downstream.Continuous monitoring of cryosphere-climate change in the region can contribute toward the improvement of disaster risk reduction and mitigation policies.展开更多
Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extrem...Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.展开更多
Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and ...Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and weak of permafrost study have led to the unclarity of mountain permafrost condition in this region.The increase in the mean annual air temperature over the past 50 years in the northeastern Siberia by various estimates is from 1.1℃to 3.3℃.So far,almost no information is available on the permafrost response to climatic changes in the region.The Kolyma Route(around 2000 km length),connecting Yakutsk and Magadan that crosses 5 climatic types and more than 10 permafrost landscapes,so it seems a suitable path for establishing basic(reference)monitoring sites.From 12 target boreholes,on the first stage 5 boreholes up to 30 m in depth were drilled and instrumented for measuring temperature at sites adjacent to weather stations in the Verkhoyansk Range from 283 to 1288 m a.s.l.Here we present conception,purpose,and methods for permafrost study project with first preliminary results from the highest weather station of the East Siberia Mountain.The following research about geophysical investigations,permafrost landscape description,mapping and spatial modelling,numerical computing,physical modelling of permafrost thickness might be initiated by the Eastern Siberia Permafrost Transect(ESPT)-project.展开更多
The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain...The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.展开更多
The permafrost table is an important index for the design and construction of roads in cold regions,so it is necessary to find a convenient,accurate and fast judgment method to determine the permafrost table.In this s...The permafrost table is an important index for the design and construction of roads in cold regions,so it is necessary to find a convenient,accurate and fast judgment method to determine the permafrost table.In this study,a three-field coupled model was established based on the hydrothermal salt coupling within the permafrost and the similarity theory,and the changes of the permafrost table under different temperature,moisture and salt conditions were numerically simulated by considering the transient temperature change and the influence of the permafrost layer on the seasonally thawed layer.In addition,an accelerated permafrost table test method was designed based on the time-domain variation and hydrothermal salt coupling by the similarity theory,which rapidly simulated the permafrost table change under different temperatures,moisture,and salts in the natural environment.Comparing the simulation and test results with the measured values in the field,the errors are less than 3%,which verified the feasibility of the method for determining the permafrost table,and the simulated results are better than the test results.Results show that the results of determining the permafrost table with a single index have different degrees of deviation,and the permafrost table obtained by the temperature index is the most accurate in general,and it is more accurate to use the average value of the three indexes as the permafrost table compared with a single index.展开更多
Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the c...Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.展开更多
As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the r...As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the results of a field study monitoring the supra-permafrost groundwater levels on both sides of an embankment in permafrost regions.It describes a two-dimensional coupled hydro-thermal model and uses it to analyze the influence of seepage on its temperature field considering climate warming.The results show that seepage exacerbates permafrost thawing and thickens the active layer.The thermal influence on the sunny side of the embankment toe is more significant than that on the shady side,which will cause differential settlement in the embankment.After 50 years of operation,the embankment soil temperature with seepage during freezing is 0.2C warmer than that without seepage,and the thermal influence diminished with the increase in depth.Additionally,seepage influences the thermal regime in vertical and horizontal directions of the embankment.During freezing seasons,the thaw depth increases,and the horizontal thaw range decreases.During thawing seasons,the thaw range grows both vertically and horizontally.展开更多
The results of monitoring studies of the ground thermal state beneath the Yakutsk Combined Heat and Power Plant buildings are presented in order to determine their structural stability and the possibility of further t...The results of monitoring studies of the ground thermal state beneath the Yakutsk Combined Heat and Power Plant buildings are presented in order to determine their structural stability and the possibility of further troublefree operation of the entire complex of the structures.The main causes for the formation of water-bearing taliks under and adjacent to the buildings are presented,and the factors influencing the existing geocryological situation are discussed.The continuing stable state of the buildings demonstrates the possibility of using two construction principles on permafrost at one site,including preserving permafrost and accommodating permafrost thawing.展开更多
Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-T...Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.展开更多
Thermal infrared satellite imagery is increasingly utilized in permafrost studies.One useful application of the land surface temperature(LST)products is classification and mapping of landscapes in permafrost regions,a...Thermal infrared satellite imagery is increasingly utilized in permafrost studies.One useful application of the land surface temperature(LST)products is classification and mapping of landscapes in permafrost regions,as LST values can help differentiate between frozen and unfrozen ground.This article describes a new approach to the use of LST.The essence of the new approach lies in the fact that in the territory where it is impossible to determine(indicate)the state of the underlying ground according to the same morphological characteristics(relief,vegetation,soil composition,etc.),the LST parameter,which reflects the thermal state of the landscape,allows as an additional criterion(indicator)identify frozen/un-frozen landscapes.In this work,using the above approach,a map has been compiled,which shows the permafrost natural-territorial complexes of the Elkon Massif,Eastern Siberia,including topography,slope aspect,slope angle,vegetation,snow cover and LST.The map provides a more detailed and updated description of permafrost distribution in the study area.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Youth Innovation Promotion Association CAS[grant number 2021073]the special fund of the Yunnan University“double firstclass”construction.
文摘The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
基金Funded by the National Natural Science Foundation of China(Nos.52068035,52078372,and 52478272)。
文摘This study aimed to investigate the performance evolution characteristics of concrete under permafrost ambient temperatures and to explore methods to mitigate the thermal perturbation by concrete on the permafrost environment.A program was designed to investigate the properties of various concretes at three curing conditions.The compressive strength development pattern of each group was evaluated and the concrete's performance was characterized by compressive strength damage degree,hydration temperature and SEM analysis in a low temperature environment.The experimental results show that the incorporation of fly ash alone or incombination with other admixtures in concrete under low-temperature curing does not deteriorate its microstructure,and at the same time,it can slow down the hydration rate of cement and significantly reduce the exothermic heat of hydration of concrete.These findings are expected to provide valuable references for the proportioning design of concrete in permafrost environments.
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
基金supported by the National Natural Science Foundation of China(Grant No.42071095)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-59)+1 种基金the Science and Technology Project of Gansu Province(Grant No.22JR5RA086)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G02).
文摘During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.
基金funded by the National Natural Science Foundation of China(41641024)the Science and the Technology Project of Heilongjiang Communications Investment Group(JT-100000-ZC-FW-2021-0182)the Field Scientific Observation and Research Station of the Ministry of Education-Geological Environment System of the Permafrost Area in Northeast China(MEORS-PGSNEC).
文摘Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change.
基金This work was supported by Gansu Provincial Science and Technology Program(22ZD6FA005)"Light of the West"Cross-team Project of the Chinese Academy of Sciences(xbzgzdsys-202214)+1 种基金the National Natural Science Foundation of China(41871064)Qinghai Province High-level Innovative"Thousand Talents"Program.
文摘Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.
基金supported by the Natural Science Foundation of China (Grants No.41101065)the State Key Laboratory of Frozen Soil Engineering Funds (SKLFSE-ZT-34,SKLFSE-ZQ-202103).
文摘The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.
基金part of a Master research project supported by the Alliance of International Science Organizations(ANSO)supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant Nos.2019QZKK0902 and 2019QZKK0903)+2 种基金the National Natural Science Foundation of China(Grant No.42071017)the CAS President’s International Fellowship Initiative(Grant No.2021VEA0005)the Science and Technology Research Program of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(No.IMHE-ZDRW-03)。
文摘Knowledge of glacier changes and associated hazards is of great importance for the safety consideration of the population and infrastructure in the mountainous regions of Upper Indus Basin(UIB).In this study,we assessed the variations in glacier velocity,glacier surface elevation change,meteorological conditions,and permafrost distribution in Badswat and Shishkat catchments located in UIB to access the potential impact on the occurrence of debris flow in both catchments.We find that the glacier surface velocity increased during the debris flow event in the Badswat catchment and the mean daily temperature was 3.7℃to 3.9℃higher in most of the locations.The enhanced glacier surface elevation lowering period coincide with the rise in temperature during spring and autumn months between 2015 to 2019 in Badswat catchment.The source region of debris flow falls within the lower boundary of permafrost occurrence zone and lies below the 0℃isotherm during late spring and summer months.In Shishkat catchment the 0℃isotherm reaches above the debris flow source area during August and the glacier do not show any significant variations in velocity and surface elevation change.The debris flow source area is adjacent to the slow-moving rock glacier in Shishkat catchment while in Badswat catchment the debris flow initiated from the former glacier moraine.Both catchments are largely glacierized and thus sensitive to changes in climatic conditions and changes in the cryosphere response possess significant threats to the population downstream.Continuous monitoring of cryosphere-climate change in the region can contribute toward the improvement of disaster risk reduction and mitigation policies.
基金the National Natural Science Foundation of China(No.41971076No.42171128)the Heilongjiang Provincial Department of Science and Technology(GA21A501)。
文摘Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.
基金supported by the Russian Science Foundation and Government of the Republic of Sakha(Yakutia)(project No 22-27-20073)。
文摘Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and weak of permafrost study have led to the unclarity of mountain permafrost condition in this region.The increase in the mean annual air temperature over the past 50 years in the northeastern Siberia by various estimates is from 1.1℃to 3.3℃.So far,almost no information is available on the permafrost response to climatic changes in the region.The Kolyma Route(around 2000 km length),connecting Yakutsk and Magadan that crosses 5 climatic types and more than 10 permafrost landscapes,so it seems a suitable path for establishing basic(reference)monitoring sites.From 12 target boreholes,on the first stage 5 boreholes up to 30 m in depth were drilled and instrumented for measuring temperature at sites adjacent to weather stations in the Verkhoyansk Range from 283 to 1288 m a.s.l.Here we present conception,purpose,and methods for permafrost study project with first preliminary results from the highest weather station of the East Siberia Mountain.The following research about geophysical investigations,permafrost landscape description,mapping and spatial modelling,numerical computing,physical modelling of permafrost thickness might be initiated by the Eastern Siberia Permafrost Transect(ESPT)-project.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA23060703)the National Natural Science Foundation of China(41671068)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2023)。
文摘The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.
基金the National Natural Science Foundation of China(Grant Nos.52078177and 51408005)Anhui Jianzhu University scientific research project(HYB20210134)Anhui Provincial Natural Science Foundation(2308085ME187)。
文摘The permafrost table is an important index for the design and construction of roads in cold regions,so it is necessary to find a convenient,accurate and fast judgment method to determine the permafrost table.In this study,a three-field coupled model was established based on the hydrothermal salt coupling within the permafrost and the similarity theory,and the changes of the permafrost table under different temperature,moisture and salt conditions were numerically simulated by considering the transient temperature change and the influence of the permafrost layer on the seasonally thawed layer.In addition,an accelerated permafrost table test method was designed based on the time-domain variation and hydrothermal salt coupling by the similarity theory,which rapidly simulated the permafrost table change under different temperatures,moisture,and salts in the natural environment.Comparing the simulation and test results with the measured values in the field,the errors are less than 3%,which verified the feasibility of the method for determining the permafrost table,and the simulated results are better than the test results.Results show that the results of determining the permafrost table with a single index have different degrees of deviation,and the permafrost table obtained by the temperature index is the most accurate in general,and it is more accurate to use the average value of the three indexes as the permafrost table compared with a single index.
基金the National Mission on Himalayan Studies(NMHS),Ministry of Environment,Forest and Climate Change(MoEFCC)for the financial support under the research project number(GBPNI/NMHS-2019-20/MG)。
文摘Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.
基金the National Natural Science Foundation of China(Grant No.42001065)Open Project of State Key Laboratory of Frozen Soils Engineering(Grant No.SKLFSE202106)+1 种基金the Natural Science Foundation of Ningxia(2022AAC03052)the University First-Class Discipline Construction Project of Ningxia,China(Grant No.NXYLXK2021A03).
文摘As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the results of a field study monitoring the supra-permafrost groundwater levels on both sides of an embankment in permafrost regions.It describes a two-dimensional coupled hydro-thermal model and uses it to analyze the influence of seepage on its temperature field considering climate warming.The results show that seepage exacerbates permafrost thawing and thickens the active layer.The thermal influence on the sunny side of the embankment toe is more significant than that on the shady side,which will cause differential settlement in the embankment.After 50 years of operation,the embankment soil temperature with seepage during freezing is 0.2C warmer than that without seepage,and the thermal influence diminished with the increase in depth.Additionally,seepage influences the thermal regime in vertical and horizontal directions of the embankment.During freezing seasons,the thaw depth increases,and the horizontal thaw range decreases.During thawing seasons,the thaw range grows both vertically and horizontally.
文摘The results of monitoring studies of the ground thermal state beneath the Yakutsk Combined Heat and Power Plant buildings are presented in order to determine their structural stability and the possibility of further troublefree operation of the entire complex of the structures.The main causes for the formation of water-bearing taliks under and adjacent to the buildings are presented,and the factors influencing the existing geocryological situation are discussed.The continuing stable state of the buildings demonstrates the possibility of using two construction principles on permafrost at one site,including preserving permafrost and accommodating permafrost thawing.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (2019YJ041).
文摘Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.
文摘Thermal infrared satellite imagery is increasingly utilized in permafrost studies.One useful application of the land surface temperature(LST)products is classification and mapping of landscapes in permafrost regions,as LST values can help differentiate between frozen and unfrozen ground.This article describes a new approach to the use of LST.The essence of the new approach lies in the fact that in the territory where it is impossible to determine(indicate)the state of the underlying ground according to the same morphological characteristics(relief,vegetation,soil composition,etc.),the LST parameter,which reflects the thermal state of the landscape,allows as an additional criterion(indicator)identify frozen/un-frozen landscapes.In this work,using the above approach,a map has been compiled,which shows the permafrost natural-territorial complexes of the Elkon Massif,Eastern Siberia,including topography,slope aspect,slope angle,vegetation,snow cover and LST.The map provides a more detailed and updated description of permafrost distribution in the study area.