期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Spatiotemporal dynamics of vegetation response to permafrost degradation in Northeast China
1
作者 QIU Lisha SHAN Wei +3 位作者 GUO Ying ZHANG Chengcheng LIU Shuai YAN Aoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第11期1562-1583,共22页
Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this re... Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change. 展开更多
关键词 permafrost degradation surface frost number(SFN) normalized difference vegetation index(NDVI) vegetation response climate change Northeast China
下载PDF
Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau 被引量:19
2
作者 HuiJun Jin DongLiang Luo ShaoLing Wang LanZhi Lv JiChun Wu 《Research in Cold and Arid Regions》 2011年第4期281-305,共25页
Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QT... Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence. 展开更多
关键词 QTP permafrost degradation ground temperatures change rates
下载PDF
Impact of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions 被引量:7
3
作者 彭惠 马巍 +1 位作者 穆彦虎 金龙 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1079-1086,共8页
Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway(QTH). Due to heat absorbing effect of asphalt pavement and c... Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway(QTH). Due to heat absorbing effect of asphalt pavement and climate warming,permafrost beneath asphalt pavement experienced significant warming and degradation. During the monitoring period, warming amplitude of the soil at depth of 5 m under asphalt ranged from 0.21 °C at the XD1 site to 0.5 °C at the KL1 site. And at depth of 10 m, the increase amplitude of ground temperature ranged from 0.47 °C at the NA1 site to 0.07 °C at the XD1 site. Along with ground temperature increase, permafrost table beneath asphalt pavement decline considerably. Amplitude of permafrost table decline varied from 0.53 m at the KL1 site to 3.51 m at the NA1 site, with mean amplitude of 1.65 m for 8 monitoring sites during the monitoring period. Due to permafrost warming and degradation, the embankment deformation all performed as settlement at these sites. At present, those settlements still develop quickly and are expected to continue to increase in the future. The embankment deformations can be divided into homogeneous deformation and inhomogeneous deformation. Embankment longitudinal inhomogeneous deformation causes the wave deformations and has adverse effects on driving comfort and safety, while lateral inhomogeneous deformation causes longitudinal cracks and has an adverse effect on stability. Corresponding with permafrost degradation processes,embankment settlement can be divided into four stages. For QTH, embankment settlement is mainly comprised of thawing consolidation of ice-rich permafrost and creep of warming permafrost beneath permafrost table. 展开更多
关键词 Qinghai-Tibet Highway(QTH) permafrost degradation embankment deformation thawing settlement
下载PDF
Characteristics of permafrost degradation in Northeast China and its ecological effects: A review 被引量:1
4
作者 ShanShan Chen ShuYing Zang Li Sun 《Research in Cold and Arid Regions》 CSCD 2020年第1期1-11,共11页
Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air tem... Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air temperature in the permafrost regions of Northeast China has been on the rise since the 1950s,and will keep rising in the 21st century,leading to extensive degradation of permafrost.Permafrost degradation in NNE China has its own characteristics,such as northward shifts in the shape of a"W"for the permafrost southern boundary(SLP),discontinuous permafrost degradation into islandlike frozen soil,and gradually disappearing island permafrost.Permafrost degradation leads to deterioration of the ecological environment in cold regions.As a result,the belt of larch forests dominated by Larix gmelinii has shifted northwards and wetland areas with symbiotic relationships with permafrost have decreased significantly.With rapid retreat and thinning of permafrost and vegetation change,the CO2 and CH4 flux increases with mean air temperature from continuous to sporadic permafrost areas as a result of activity of methanogen enhancement,positively feeding back to climate warming.This paper reviews the features of permafrost degradation,the effects of permafrost degradation on wetland and forest ecosystem structure and function,and greenhouse gas emissions on latitudinal permafrost in NNE China.We also put forward critical questions about the aforementioned effects,including:(1)establish long-term permafrost observation systems to evaluate the distribution of permafrost and SLP change,in order to study the feedback of permafrost to climate change;(2)carry out research about the effects of permafrost degradation on the wetland ecosystem and the response of Xing'an larch to global change,and predict ecosystem dynamics in permafrost degradation based on long-term field observation;(3)focus intensively on the dynamics of greenhouse gas flux in permafrost degradation of Northeast China and the feedback of greenhouse gas emissions to climate change;(4)quantitative studies on the permafrost carbon feedback and vegetation carbon feedback due to permafrost change to climate multi-impact and estimate the balance of C in permafrost regions in the future. 展开更多
关键词 climate warming permafrost degradation greenhouse gas emissions ecosystem impact
下载PDF
Effects of Permafrost Degradation on Soil Hydrological Processes in Alpine Steppe on the Qinghai-Tibet Plateau
5
作者 Yin Zhifang Ouyang Hua Yang Zhaoping 《Chinese Journal of Population,Resources and Environment》 2012年第3期54-61,共8页
Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured... Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured data of alpine steppe in Wudaoliang assessed the model performance in simulating soil freezing and thawing processes.Comparison of the simulated results by simultaneous heat and water(SHAW) model to the measured data showed that SHAW model performed satisfactorily.Based on analyzing the simulated and predicted results,two points were obtained:(1) freezing and thawing of the active layer proceeded both from the soil surface downward.Compared with the freezing process,the thawing process was slower.The freezing period persisted in the surface layer(4 cm depth) for about 5 months;(2) in the next 50 years,frozen period would be shorten about 20 days in the top 100 cm depth while the thawing would start earlier 40 days than present.Soil water storage in the 0-60 cm would decrease by 22% averagely,especially from June to August when the vegetation is at the dominating water consumed stage.Therefore,this kind of permafrost degradation as active layer freezing and thawing processes changes will reduce soil water content and thus influence those ecosystems above it. 展开更多
关键词 Qinghai-Tibet Plateau permafrost degradation SHAW model soil water content
下载PDF
Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
6
作者 ShengYun Chen MingHui Wu +1 位作者 Yu Zhang Kai Xue 《Research in Cold and Arid Regions》 CSCD 2021年第3期268-270,共3页
The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and st... The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and stores massive soil carbon. 展开更多
关键词 permafrost QTP Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
下载PDF
Impacts of permafrost degradation on streamflow in the northern Himalayas
7
作者 Linfeng FAN Fang JI +3 位作者 Xingxing KUANG Zhilin GUO Rui ZHANG Chunmiao ZHENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第6期1990-2000,共11页
The Himalayan water tower provides crucial water resources for Asia.Permafrost degradation is deemed to exert important impacts on streamflow in the Himalayan rivers.Yet,the magnitudes of such impacts remain poorly qu... The Himalayan water tower provides crucial water resources for Asia.Permafrost degradation is deemed to exert important impacts on streamflow in the Himalayan rivers.Yet,the magnitudes of such impacts remain poorly quantified.Here,we established a robust hydrological model that incorporated active layer deepening and ground ice melt for the drainage basin of the largest river in the northern Himalayas-the Yarlung Zangbo River(YZR).We estimated that permafrost degradation led to~0.65 km^(3)/yr decrease in surface runoff and~0.35 km^(3)/yr increase in baseflow and ground ice melt contributed~0.25% to the annual streamflow in the YZR for the period 2001-2022.The“fill-and-spill”mechanism helps explain the seeming contradiction of observed increasing versus decreasing baseflow in different permafrost regions worldwide.We propose that the dilution of riverine dissolved organic carbon(DOC)concentrations by baseflow may lead to the riverine DOC hysteresis patterns.This study not only lays solid scientific basis for water resources management in the Himalayas,but also yields new insights into how to interpret measured river discharge and nutrient flux in permafrost regions over the globe. 展开更多
关键词 permafrost degradation HYDROLOGY Streamflow Surface runoff GROUNDWATER HIMALAYAS
原文传递
Impacts of spatially inconsistent permafrost degradation on streamflow in the Lena River Basin
8
作者 XUE ZeHuan WANG YiChu +2 位作者 ZHAO Yi LI DongDeng BORTHWICK Alistair George Liam 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第11期3559-3570,共12页
Although permafrost degradation contributes significantly to hydrological change in cold regions, gaps remain in our understanding of streamflow variation induced by degrading permafrost in different river basins. We ... Although permafrost degradation contributes significantly to hydrological change in cold regions, gaps remain in our understanding of streamflow variation induced by degrading permafrost in different river basins. We therefore used a deep learning model to simulate the long-term(≥ 30 years) monthly streamflow at 60 hydrological stations along the Lena River, the third longest circum-Arctic river. Analyzing the effects of precipitation, temperature, and thaw depth on streamflow variation throughout the Lena River Basin, we identified two feedback patterns relating streamflow to warming permafrost, observed in areas of continuous and discontinuous permafrost. In northern plain regions with continuous permafrost, 94% of stations presented an increasing trend in annual streamflow from the 1900s to the 2010s due to permafrost degradation. The enhanced streamflow was mainly due to increased meltwater in the flood season. In southern regions covered by both continuous and discontinuous permafrost, approximately 38% of stations exhibited a declining trend in annual streamflow in response to permafrost degradation, with a high proportion(61%) located in mountain regions(elevation ≥ 500 m). The decline is attributed to the enhanced infiltration capacity of thawing frozen layers within discontinuous permafrost regions. Our study provides new insights into the mechanisms behind permafrost degradation-induced streamflow variation and highlights the importance of formulating tailored strategies for sustainable river management in cold regions experiencing climate change. 展开更多
关键词 permafrost degradation streamflow variation deep learning model climate change large cold basin
原文传递
Permafrost degradation along the Qinghai-Tibet Highway from 1995 to 2020 被引量:3
9
作者 Zhi-Zhong SUN Wei MA +2 位作者 Gui-Long WU Yong-Zhi LIU Guo-Yu LI 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期248-254,共7页
Permafrost degradation significantly affects engineering infrastructure,hydrologic processes,landscape and geomorphic processes,ecosystems and carbon cycling in cold regions.The permafrost degradation along the Qingha... Permafrost degradation significantly affects engineering infrastructure,hydrologic processes,landscape and geomorphic processes,ecosystems and carbon cycling in cold regions.The permafrost degradation along the Qinghai–Tibet Highway(QTH)on the Qinghai–Tibet Plateau,China,introduces an adverse effect on the deformation of the highway subgrade.At present,observation of a long series of ground temperatures is lacking.From 1995 to 2020,a monitoring system of ground temperature in 10 natural sites along QTH was built and maintained.Ground temperatures at different depths were continuously observed semi-monthly.In this study,permafrost changes along QTH were quantitatively investigated based on these records.The main results showed that both the permafrost table depth(PTD)and ground temperature at different depths exhibited an increasing trend from 1995 to 2020 with widespread spatiotemporal differences.The higher the annual mean and range of PTD were,the higher the increase rate in PTD.The increase rates in PTDs in the warm permafrost regions were 6.18 cm per year larger than those in the cold ones.Overall,the increase rates in ground temperature decreased with the increase in depth at each site.At different depths,the smaller the mean annual ground temperature(MAGT)was,the larger the increase rate in the permafrost temperatures.The larger the range of ground temperatures was,the bigger the increase rate in the permafrost temperatures.At a depth of 6.0 m,the increase rate in the ground temperature in cold permafrost regions was twice that in warm permafrost regions.Information on the magnitudes and differences in permafrost degradation along QTH is necessary for the design of effective adaption strategies for engineering construction and environment protection in permafrost regions under climatic warming. 展开更多
关键词 permafrost table depth permafrost temperature permafrost degradation Qinghai-Tibet Highway Qinghai-Tibet Plateau
原文传递
Impacts of climate-induced permafrost degradation on vegetation:A review 被引量:27
10
作者 JIN Xiao-Ying JIN Hui-Juna +4 位作者 Go IWAHANA Sergey SMARCHENKO LUO Dong-Liang LI Xiao-Ying LIANG Si-Hai 《Advances in Climate Change Research》 SCIE CSCD 2021年第1期29-47,共19页
Under a warming climate,degrading permafrost profoundly and extensively affects arctic and alpine ecology.However,most existing relevant studies are more focused on the hydrothermal impacts of vegetation on the underl... Under a warming climate,degrading permafrost profoundly and extensively affects arctic and alpine ecology.However,most existing relevant studies are more focused on the hydrothermal impacts of vegetation on the underlying permafrost,or symbiosis between vegetation and permafrost,only very few on ecological impacts of permafrost degradation.Additionally,there are much more pertinent investigations in arctic and boreal regions than those in alpine and high-plateau regions at mid-and low latitudes.This study emphasizes on the impact mechanisms of permafrost degradation on vegetation both at high and mid-to low latitudes,addressing vegetation succession trajectories and associated changes in soil hydrology and soil nutrient above degrading permafrost.Permafrost degradation influences vegetation by altering soil hydrology,soil biogeochemical processes and microbial communities,which further improve soil nutrient availability.Furthermore,under a warming climate,vegetation may take two successional trajectories,towards a wetter or drier ecosystem within a certain time period,but to a drier ecosystem in the end upon the thaw of permafrost in case of permeable soils and good drainage.Thus,with rapidly developing remote-sensing and other space-and ground-based and air-borne observational networks and numerical predictive models,the impacting mechanisms of permafrost degradation on vegetation should be timely and better monitored,evaluated and modeled at desired spatiotemporal scales and resolutions by terrestrial or integrated ecosystem models. 展开更多
关键词 Degrading permafrost VEGETATION Impact mechanisms Climate warming Ecological impacts
原文传递
Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau,China 被引量:15
11
作者 MA Qiang JIN Hui-Jun +4 位作者 Victor F.BENSE LUO Dong-Liang Sergey S.MARCHENKO Stuart A.HARRIS LAN Yong-Chao 《Advances in Climate Change Research》 SCIE CSCD 2019年第4期225-239,共15页
Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the T... Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the Tanag hydrological station)on the northeastern Qinghai-Tibet Plateau,West China.How and to what extent does the degrading permafrost change the flow in the SAYR?According to seasonal regimes of hydrological processes,the SAYR is divided intofour sub-basins with varied permafrost extents to detect impacts of permafrost degradation on the Yellow River streamflow.Results show that permafrost degradation may have released appreciable meltwater for recharging groundwater.The potential release rate of ground-ice melt-water in the Sub-basin 1(the headwater area of the Yellow River(HAYR),above the Huangheyan hydrological station)is the highest(5.6 mm per year),contributing to 14.4%of the annual Yellow River streamflow at Huangheyan.Seasonal/intra-and annual shifts of streamflow,a possible signal for the marked alteration of hydrological processes by permafrost degradation,is observed in the HAYR,but the shifts are minor in other sub-basins in the SAYR.Improved hydraulic connectivity is expected to occur during and after certain degrees of permafrost degradation.Direct impacts of permafrost degradation on the annual Yellow River streamflow in the SAYR at Tanag,i.e.,from the meltwater of ground-ice,is estimated at 4.9%that of the annual Yellow River discharge at Tanag,yet with a high uncertainty,due to neglecting of the improved hydraulic connections from permafrost degradation and the flow generation conditions for the ground-ice meltwater.Enhanced evapotranspiration,substantial weakening of the Southwest China Autumn Rain,and anthropogenic disturbances may largely account for the declined streamflow in the SAYR. 展开更多
关键词 Streamflow Warming climate permafrost degradation Streamflow patterns Source area of Yellow River(SAYR)
下载PDF
Changes in permafrost environments caused by construction and maintenance of Qinghai-Tibet Highway 被引量:2
12
作者 林战举 牛富俊 +2 位作者 罗京 鲁嘉濠 刘华 《Journal of Central South University》 SCIE EI CAS 2011年第5期1454-1464,共11页
The sideward permafrost along the Qinghai-Tibet Highway (QTH) contains massive ground-ice and is at a relatively high temperature.Under the influence of the steady increase of human activities,the permafrost environme... The sideward permafrost along the Qinghai-Tibet Highway (QTH) contains massive ground-ice and is at a relatively high temperature.Under the influence of the steady increase of human activities,the permafrost environment has been changed greatly for a long time.At present,the permafrost becomes warm and rapidly degenerates,including the decline of the permafrost table,rising of the ground temperature,shortening of the length of frozen section,and extension of range of melting region.Some thaw hazards (e.g.thaw slumping and thermokarst pond) have widely occurred along both sides of the roadbed.In addition,due to the incomplete construction management,the vegetation adjacent to the highway is seriously damaged or eradicated,resulting in the land desertification and ecosystem out of balance.The dust,waste and garbage brought by drivers,passengers,maintenance workers,and transportations may also pollute the permafrost environment. 展开更多
关键词 permafrost environment Qinghai-Tibet Highway thermokarst pond thaw slumping permafrost degradation
下载PDF
Research on the evolution law of permafrost under the influence of urbanization based on remote sensing technology
13
作者 Gao Kai Liu Yanjie +6 位作者 Ding Lin Huang Shuai Qiu Kaichi Wang Zhongpan Yang Yang Liu Xing Li Jiaxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期1007-1019,共13页
The permafrost of Mohe County and its suburbs in the Daxing′an Mountains has been influenced by the urbanization.Remote sensing,GIS technology and numerical simulation was used to study the temperature variations of ... The permafrost of Mohe County and its suburbs in the Daxing′an Mountains has been influenced by the urbanization.Remote sensing,GIS technology and numerical simulation was used to study the temperature variations of permafrost with the changes in surface vegetation that cover Mohe County and suburban areas,and the law of permafrost degradation on the study area was analyzed.The research results show that the urban area of the study area increased 114.42%from 2000 to 2016,and the urbanization process is continuing to accelerate.The Normalized Difference Vegetation Index map of 2017 in Mohe County and its suburbs was studied and the maximum proportion of vegetation coverage was different in the four seasons.The numerical calculation model results show that the permafrost temperature change in the study area cyclically fluctuates in a cosine form.The annual variation curve of permafrost temperature gradually decreased and its accompanying phase lag increased with depth.The annual temperature change value with the different depths of the town was greater than the natural ground.The maximum permafrost thawing depths of the town and natural ground were 4.2 m and 2.82 m in 50 a,and the degradation rates of the two permafrost are,respectively,0.88 cm/a and 0.46 cm/a.These results show that urbanization has accelerated the degradation of permafrost. 展开更多
关键词 remote sensing technology GIS technology permafrost degradation URBANIZATION numerical simulation
下载PDF
Evolution and changes of permafrost on the Qinghai-Tibet Plateau during the Late Quaternary 被引量:3
14
作者 XiaoLi Chang HuiJun Jin +2 位作者 RuiXia He LanZhi Lu StuartA.Harris 《Research in Cold and Arid Regions》 CSCD 2017年第1期1-19,共19页
Due to the uplift of Qinghai-Tibet Plateau (QTP), the cryosphere gradually developed on the higher mountain summits after the Neocene, becoming widespread during the Late Quaternary. During this time, permafrost on ... Due to the uplift of Qinghai-Tibet Plateau (QTP), the cryosphere gradually developed on the higher mountain summits after the Neocene, becoming widespread during the Late Quaternary. During this time, permafrost on the QTP experienced repeated expansion and degradation. Based on the remains and cross-correlation with other proxy records such as those from glacial landforms, ice-core and paleogeography, the evolution and changes of permafrost and environmental changes on the QTP during the past 150,000 years were deduced and are presented in this paper.At least four obvious cycles of the extensive and intensive development, expansion and decay of permafrost occurred during the periods of 150-130, 80-50, 30-14 and after 10.8 ka B.P.. Ehiring the Holocene, fluctuating climatic environ-ments affected the permafrost on the QTP, and the peripheral mountains experienced six periods of discernible permafrost changes: (1) Stable development of permafrost in the early Holocene (10.8 to 8.5-7.0 ka B.P.); (2) Intensive permafrost degradation during the Holocene Megathermal Period (HMP, from 8.5-7.0 to 4.0-3.0 ka B.P.); (3) Permafrost expansion during the early Neoglacial period (ca. 4,000-3,000 to 1,000 a B.P.); (4) Relative degradation during the Medieval Warm Period (MWP,from 1,000 to 500 a B.R); (5) Expansion of permafrost during the Little Ice Age (LIA,from 500 to 10.a B.P.); (6) Observed and predicted degradation of permafrost during the 20th and 21st century. Each period differed greatly in paleoclimate, paleoenvironment, and permafrost distribution, thickness, areal extent, and ground temperatures, as well as in the development of periglacial phenomena. Statistically, closer dating of the onset permafrost formation, more identi-fication of permafrost remains with richer proxy information about paleoenvironment, and more dating information enable higher resolution for paleo-permafrost reconstruction. Based on the scenarios of persistent climate warming of 2 2 -2 .6 °C in the next 50 years, and in combination of the monitored trends of climate and permafrost changes, and model predictions suggest an accelerated regional degradation of plateau pemafrost. Therefore,during the first half of the 21st century, profound changes in the stability of alpine ecosystems and hydro(geo)logical environments in the source regions of the Yangtze and Yellow rivers may occur. The foundation stability of key engineering infrastructures and sustainable eco-nomic development in cold regions on the QTP may be affected. 展开更多
关键词 Qinghai-Tibet Plateau (QTP) PLEISTOCENE Holocene permafrost expansion and degradation periglacial remains paleo-reconstruction environmental impacts
下载PDF
Impact of a retrogressive thaw slump on surrounding vegetation communities in the Fenghuoshan mountains,Qinghai-Tibet Plateau 被引量:1
15
作者 Gang Wei LaJia Weisai +5 位作者 ZiJie Zhou XinNing Wu SiRu Gao ZiTeng Fu QingBai Wu GuanLi Jiang 《Research in Cold and Arid Regions》 CSCD 2023年第1期11-17,共7页
Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst feature... Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst features caused by rapid degradation of ice rich permafrost,which transforms landforms and threatens infrastructures,and even affects the terrestrial carbon cycle.In this work,vegetation communities surrounding a RTS in the Fenghuoshan Mountains of the interior portion of the Qinghai-Tibet Plateau have been investigated to examine the impact from RTS.This investigation indicates that the occurrence of RTS influences the vegetation community by altering their habitats,especially the soil water content,which forces the vegetation community to evolve in order to adapt to the alterations.In the interior part of RTS where it has been disturbed tremendously,alterations have produced a wider niche and richer plant species.This favors species of a wet environment in a habitat where it was a relatively dry environment of alpine steppe prior to the occurrence of RTS.This study adds to limited observations regarding the impact of RTS to vegetation community on the QTP and helps us to reach a broader understanding of the effects of permafrost degradation as well as global warming. 展开更多
关键词 Retrogressive thaw slump Vegetation community Rapid permafrost degradation Global warming Qinghai-Tibet plateau
下载PDF
High-resolution assessment of retrogressive thaw slump susceptibility in the Qinghai-Tibet Engineering Corridor
16
作者 GuoAn Yin Jing Luo +4 位作者 FuJun Niu MingHao Liu ZeYong Gao TianChun Dong WeiHeng Ni 《Research in Cold and Arid Regions》 CSCD 2023年第6期288-294,共7页
Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extens... Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance. 展开更多
关键词 Retrogressive thaw slumps THERMOKARST permafrost degradation Machine learning
下载PDF
Evaluation of the energy budget of thermokarst lake in permafrost regions of the Qinghai-Tibet Plateau
17
作者 Ze-Yong GAO Fu-Jun NIU +4 位作者 Yi-Bo WANG Jing LUO Guo-An YIN Yun-Hu SHANG Zhan-Ju LIN 《Advances in Climate Change Research》 SCIE CSCD 2024年第4期636-646,共11页
Thermokarst lake formation accelerates permafrost degradation due to climate warming,thereby releasing significant amounts of carbon into the atmosphere,complicating hydrological cycles,and causing environmental damag... Thermokarst lake formation accelerates permafrost degradation due to climate warming,thereby releasing significant amounts of carbon into the atmosphere,complicating hydrological cycles,and causing environmental damage.However,the energy transfer mechanism from the surface to the sediment of thermokarst lakes remains largely unexplored,thereby limiting our understanding of the magnitude and duration of biogeochemical processes and hydrological cycles.Therefore,herein,a typical thermokarst lake situated in the center of the Qinghai-Tibet Plateau(QTP)was selected for observation and energy budget modeling.Our results showed that the net radiation of the thermokarst lake surface was 95.1,156.9,and 32.3 W m^(-2) for the annual,ice-free,and ice-covered periods,respectively,and was approximately 76%of the net radiation consumed by latent heat flux.Alternations in heat storage in the thermokarst lake initially increased from January to April,then decreased from April to December,with a maximum change of 48.1 W m^(-2) in April.The annual average heat fuxes from lake water to sediments were 1.4 W m^(-2);higher heat fluxes occurred during the ice-free season at a range of 4.9-12.0 W m^(-2).The imbalance between heat absorption and release in the millennium scale caused the underlying permafrost of the thermokarst lake to completely thaw.At present,the ground temperature beneath the lake bottom at a depth of 15 m has reached 2.0℃.The temperatures and vapor-pressure conditions of air and lake surfaces control the energy budget of the thermokarst lake.Our findings indicate that changes in the hydrologic regime shifts and biogeochemical processes are more frequent under climate warming and permafrost degradation. 展开更多
关键词 Qinghai-Tibet Plateau Thermokarst lake Energy budget permafrost degradation Hydrological cycle
原文传递
Recent advances in hydrology studies under changing permafrost on the Qinghai-Xizang Plateau
18
作者 Lu Zhou YuZhong Yang +1 位作者 DanDan Zhang HeLin Yao 《Research in Cold and Arid Regions》 2024年第4期159-169,共11页
Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatic... Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatically modifies the regional water cycle and hydrological processes,affecting the hydrogeological conditions,and ground hydrothermal status in cold regions.Permafrost thawing impacts the ecological environment,engineering facilities,and carbon storage functions,releasing some major greenhouse gases and exacerbating climate change.Despite the utilization of advanced research methodologies to investigate the changing hydrological processes and the corresponding influencing factors in permafrost regions,there still exist knowledge gaps in multivariate data,quantitative analysis of permafrost degradation's impact on various water bodies,and systematic hydrological modeling on the QXP.This review summarizes the main research methods in permafrost hydrology and elaborates on the impacts of permafrost degradation on regional precipitation distribution patterns,changes in surface runoff,expansion of thermokarst lakes/ponds,and groundwater dynamics on the QXP.Then,we discuss the current inadequacies and future research priorities,including multiple methods,observation data,and spatial and temporal scales,to provide a reference for a comprehensive analysis of the hydrological and environmental effects of permafrost degradation on the QXP under a warming climate. 展开更多
关键词 Qinghai-Xizang Plateau permafrost degradation Hydrological processes
下载PDF
Porosity of crushed rock layer and its impact on thermal regime of Qinghai-Tibet Railway embankment 被引量:6
19
作者 LIU Ming-hao LI Guo-yu +2 位作者 NIU Fu-jun LIN Zhan-ju LIN Zhan-ju 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期977-987,共11页
It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong w... It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions. 展开更多
关键词 Qinghai-Tibet Railway crushed rock embankment POROSITY wind-blown sand permafrost degradation
下载PDF
Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects 被引量:3
20
作者 Liang Zhu Ming-nan Yang +3 位作者 Jing-tao Liu Yu-xi Zhang Xi Chen Bing Zhou 《Journal of Groundwater Science and Engineering》 2022年第4期322-334,共13页
As an important water source and ecological barrier in the Yellow River Basin,the source region of the Yellow River(above the Huangheyan Hydrologic Station)presents a remarkable permafrost degradation trend due to cli... As an important water source and ecological barrier in the Yellow River Basin,the source region of the Yellow River(above the Huangheyan Hydrologic Station)presents a remarkable permafrost degradation trend due to climate change.Therefore,scientific understanding the effects of permafrost degradation on runoff variations is of great significance for the water resource and ecological protection in the Yellow River Basin.In this paper,we studied the mechanism and extent of the effect of degrading permafrost on surface flow in the source region of the Yellow River based on the monitoring data of temperature and moisture content of permafrost in 2013–2019 and the runoff data in 1960–2019.The following results have been found.From 2013 to 2019,the geotemperature of the monitoring sections at depths of 0–2.4 m increased by 0.16°C/a on average.With an increase in the thawing depth of the permafrost,the underground water storage space also increased,and the depth of water level above the frozen layer at the monitoring points decreased from above 1.2 m to 1.2–2 m.64.7%of the average multiyear groundwater was recharged by runoff,in which meltwater from the permafrost accounted for 10.3%.Compared to 1960-1965,the runoff depth in the surface thawing period(from May to October)and the freezing period(from November to April)decreased by 1.5 mm and 1.2 mm,respectively during 1992–1997,accounting for 4.2%and 3.4%of the average annual runoff depth,respectively.Most specifically,the decrease in the runoff depth was primarily reflected in the decreased runoff from August to December.The permafrost degradation affects the runoff within a year by changing the runoff generation,concentration characteristics and the melt water quantity from permafrost,decreasing the runoff at the later stage of the permafrost thawing.However,the permafrost degradation has limited impacts on annual runoff and does not dominate the runoff changes in the source region of the Yellow River in the longterm. 展开更多
关键词 RUNOFF permafrost degradation Climate change Source region of the Yellow River
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部