In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
Trinomial permutation polynomials of the form xr(ax2s + bxs + c) over Fq have been studied where 3|q-1 and s = (q-1)/3. We derive some necessary and sufficient conditions for these trinomials to be permutation polynom...Trinomial permutation polynomials of the form xr(ax2s + bxs + c) over Fq have been studied where 3|q-1 and s = (q-1)/3. We derive some necessary and sufficient conditions for these trinomials to be permutation polynomials, and construct some examples. Moreover, we discuss the relationship between permutation trinomials of the given type over a tower of finite fields.展开更多
The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<...The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<sub>i,i+1</sub> of the set A<sub>1</sub> to give maximum M-d. Some results to find optimal combina-tions of the elements of the set A<sub>1</sub> have been reported in part I. In this part, some rules forpermuting these elements are introduced. By means of these rules, three kinds of intercalated setsof A<sub>1</sub> have been found, namely: (1) Sets with an even left wing, (2) Sets with coincidence of bothwings, and (3) Sets with circulated elements.展开更多
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st...In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.展开更多
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei...The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.展开更多
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac...Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.展开更多
We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and o...We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are stu...The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.展开更多
A constrained partial permutation strategy is proposed for matching spatial relation graph (SRG), which is used in our sketch input and recognition system Smart Sketchpad for representing the spatial relationship amon...A constrained partial permutation strategy is proposed for matching spatial relation graph (SRG), which is used in our sketch input and recognition system Smart Sketchpad for representing the spatial relationship among the components of a graphic object. Using two kinds of matching constraints dynamically generated in the matching process, the proposed approach can prune most improper mappings between SRGs during the matching process. According to our theoretical analysis in this paper, the time complexity of our approach is O(n 2) in the best case, and O(n!) in the worst case, which occurs infrequently. The spatial complexity is always O(n) for all cases. Implemented in Smart Sketchpad, our proposed strategy is of good performance.展开更多
Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is...Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .展开更多
This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a...This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.展开更多
The quantitative precipitation forecast(QPF)performance by numerical weather prediction(NWP)methods depends fundamentally on the adopted physical parameterization schemes(PS).However,due to the complexity of the physi...The quantitative precipitation forecast(QPF)performance by numerical weather prediction(NWP)methods depends fundamentally on the adopted physical parameterization schemes(PS).However,due to the complexity of the physical mechanisms of precipitation processes,the uncertainties of PSs result in a lower QPF performance than their prediction of the basic meteorological variables such as air temperature,wind,geopotential height,and humidity.This study proposes a deep learning model named QPFNet,which uses basic meteorological variables in the ERA5 dataset by fitting a non-linear mapping relationship between the basic variables and precipitation.Basic variables forecasted by the highest-resolution model(HRES)of the European Centre for Medium-Range Weather Forecasts(ECMWF)were fed into QPFNet to forecast precipitation.Evaluation results show that QPFNet achieved better QPF performance than ECMWF HRES itself.The threat score for 3-h accumulated precipitation with depths of 0.1,3,10,and 20 mm increased by 19.7%,15.2%,43.2%,and 87.1%,respectively,indicating the proposed performance QPFNet improved with increasing levels of precipitation.The sensitivities of these meteorological variables for QPF in different pressure layers were analyzed based on the output of the QPFNet,and its performance limitations are also discussed.Using DL to extract features from basic meteorological variables can provide an important reference for QPF,and avoid some uncertainties of PSs.展开更多
Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the ef...Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field.展开更多
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
文摘Trinomial permutation polynomials of the form xr(ax2s + bxs + c) over Fq have been studied where 3|q-1 and s = (q-1)/3. We derive some necessary and sufficient conditions for these trinomials to be permutation polynomials, and construct some examples. Moreover, we discuss the relationship between permutation trinomials of the given type over a tower of finite fields.
文摘The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<sub>i,i+1</sub> of the set A<sub>1</sub> to give maximum M-d. Some results to find optimal combina-tions of the elements of the set A<sub>1</sub> have been reported in part I. In this part, some rules forpermuting these elements are introduced. By means of these rules, three kinds of intercalated setsof A<sub>1</sub> have been found, namely: (1) Sets with an even left wing, (2) Sets with coincidence of bothwings, and (3) Sets with circulated elements.
基金supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB114 and 2023BAB094).
文摘In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.
基金Supported by the National Natural Science Foundation of China(No.62033011)Science and Technology Project of Hebei Province(No.216Z1704G,No.20310401D)。
文摘The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.
基金supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).
文摘Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.
文摘We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.
基金the National Natural Science Foundation of China(60673127)the National High Technology Research and Development Program of China(863Program)(2007AA01Z404)~~
文摘The cascade of reversible logic gate network with n inputs and n outputs forms a group isomorphic to the symmetric group S2^n. Characteristics of a number of gates from the set of all generalized Toffoli gates are studied. Any permutation Sn is proved to be generated by a n-cycle 9 and a permutation τ= (ij,ik) together. It shows that any neighboring 2-cycle permutation can be generated by at most two NOT gates without ancilla bit. Based on the above theory, a cascade algorithm for reversible logic gate networks is proposed. A reversible example of logic gate network cascade is given to show the correctness of the algorithm.
文摘A constrained partial permutation strategy is proposed for matching spatial relation graph (SRG), which is used in our sketch input and recognition system Smart Sketchpad for representing the spatial relationship among the components of a graphic object. Using two kinds of matching constraints dynamically generated in the matching process, the proposed approach can prune most improper mappings between SRGs during the matching process. According to our theoretical analysis in this paper, the time complexity of our approach is O(n 2) in the best case, and O(n!) in the worst case, which occurs infrequently. The spatial complexity is always O(n) for all cases. Implemented in Smart Sketchpad, our proposed strategy is of good performance.
文摘Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .
基金The National Natural Science Foundation of China(No.61375118)the Program for New Century Excellent Talents in University of China(No.NCET-12-0115)
文摘This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.
基金the financial support of the National Key Research and Development Program (Grant No. 2017YFC1502000)the National Natural Science Foundation of China (Key Program, 91937301)
文摘The quantitative precipitation forecast(QPF)performance by numerical weather prediction(NWP)methods depends fundamentally on the adopted physical parameterization schemes(PS).However,due to the complexity of the physical mechanisms of precipitation processes,the uncertainties of PSs result in a lower QPF performance than their prediction of the basic meteorological variables such as air temperature,wind,geopotential height,and humidity.This study proposes a deep learning model named QPFNet,which uses basic meteorological variables in the ERA5 dataset by fitting a non-linear mapping relationship between the basic variables and precipitation.Basic variables forecasted by the highest-resolution model(HRES)of the European Centre for Medium-Range Weather Forecasts(ECMWF)were fed into QPFNet to forecast precipitation.Evaluation results show that QPFNet achieved better QPF performance than ECMWF HRES itself.The threat score for 3-h accumulated precipitation with depths of 0.1,3,10,and 20 mm increased by 19.7%,15.2%,43.2%,and 87.1%,respectively,indicating the proposed performance QPFNet improved with increasing levels of precipitation.The sensitivities of these meteorological variables for QPF in different pressure layers were analyzed based on the output of the QPFNet,and its performance limitations are also discussed.Using DL to extract features from basic meteorological variables can provide an important reference for QPF,and avoid some uncertainties of PSs.
基金supported by the National Natural Science Foundation of China(No.51904173)Shandong Provincial Natural Science Foundation(No.ZR2018MEE008)the Project of Shandong Province Higher Educational Science and Technology Program(No.J18KA307).
文摘Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field.