BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI ...GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene展开更多
The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30...The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition展开更多
In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selen...In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance展开更多
[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedl...[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.展开更多
[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua ...[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice展开更多
In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human an...In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.展开更多
[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic ...[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.展开更多
Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate th...Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.展开更多
Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. mem...Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.展开更多
The activity of horseradish peroxidase at b-cyclodextrin polymer was imaged by scanning electrochemical microscopy using 3, 3', 5, 5'-tetramethylbenzide and H2O2 as the substrates.
The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the M...The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the MnP immobilized together with Mn 2+ and H_2O_2 could effectively oxidize syringaldazine in n-heptane. The immobilized MnP still had a high catalytic activity after one-month storage under a freezing condition. The reuse times have a relation to the amount of the immobilized H_2O_2. When the amount of the immobilized H_2O_2 is sufficient, the microemulsion-based gels containing MnP could be used many times.展开更多
In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after...In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.展开更多
Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium cata...Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily展开更多
The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extra...The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extracted from P chrysosporium by PCR with primers that do not contain a P. chrysosporium lignin peroxidase secretion signal. The gene was then successfully inserted into the expression vector pPICZα, and resulted in the recombinant vector pPICZα-lipH2. The transformation was conducted in two ways. One was using the wild Pichia pastoris as the recipients, which results in the recombinant P. pastoris with single or low lipH2 gene copy. The second was using P. pastoris and single or low lipH2 gene copy as the recipients, which results in the recombinant P. pastoris with multi-copies of lipH2 genes. This study firstly expressed the gene lipH2 in P. pastoris and achieved the successful expression of the lipH2 depending upon the generation of a recombinant strain that contained multiple copies. The lignin peroxidase activity reached a maximum of 15 U/L after 12 h induction.展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
文摘GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene
文摘The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition
文摘In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance
文摘[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.
基金Supported by National Natural Science Foundation of China(30671126)~~
文摘[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice
基金Supported by the National Natural Science Foundation of China(No.30970608)the Applicative Technological Project of Bureau of Science and Technology of Changchun City, China(No.2009045)+1 种基金the Development and Planning Major Program of Jilin Provincial Science and Technology Department, China(No.20100948)the Innovation Method Fund of China (No.2008IM040800)
文摘In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.
文摘[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.
基金The Modern Agro-industry Technology Research System under contract No.CARS-47the National High-tech R&D Program(863 Program) of China under contract No.2012AA10A409+1 种基金the Special Fund for Independent Innovation of Shandong Province under contract No.2013CX80202the Special Fund for Agro-scientific Research in the Public Interest under contract No.201103034
文摘Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.
基金the grants fromthe National Natural Science Foundation of China(NNSF-30170663) the Chinese Academy of Sciences.
文摘Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.
文摘The activity of horseradish peroxidase at b-cyclodextrin polymer was imaged by scanning electrochemical microscopy using 3, 3', 5, 5'-tetramethylbenzide and H2O2 as the substrates.
文摘The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the MnP immobilized together with Mn 2+ and H_2O_2 could effectively oxidize syringaldazine in n-heptane. The immobilized MnP still had a high catalytic activity after one-month storage under a freezing condition. The reuse times have a relation to the amount of the immobilized H_2O_2. When the amount of the immobilized H_2O_2 is sufficient, the microemulsion-based gels containing MnP could be used many times.
文摘In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.
文摘Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily
基金supported by the National Natural Science Foundation of China (No. 20577028).
文摘The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extracted from P chrysosporium by PCR with primers that do not contain a P. chrysosporium lignin peroxidase secretion signal. The gene was then successfully inserted into the expression vector pPICZα, and resulted in the recombinant vector pPICZα-lipH2. The transformation was conducted in two ways. One was using the wild Pichia pastoris as the recipients, which results in the recombinant P. pastoris with single or low lipH2 gene copy. The second was using P. pastoris and single or low lipH2 gene copy as the recipients, which results in the recombinant P. pastoris with multi-copies of lipH2 genes. This study firstly expressed the gene lipH2 in P. pastoris and achieved the successful expression of the lipH2 depending upon the generation of a recombinant strain that contained multiple copies. The lignin peroxidase activity reached a maximum of 15 U/L after 12 h induction.