Unmanned Aerial Vehicles (UAVs) have emerged as innovative tools in agriculture, revolutionizing crop protection practices and the use of pesticide combinations to aid the management of insect pests and diseases in a ...Unmanned Aerial Vehicles (UAVs) have emerged as innovative tools in agriculture, revolutionizing crop protection practices and the use of pesticide combinations to aid the management of insect pests and diseases in a single application. This research delves into assessing the efficacy of drone-based pesticide spraying utilizing combinations of pesticides to combat insect pests and diseases in rice cultivation. In kharif 2022, the physically compatible combination of insecticides (chlorantraniliprole 18.5% SC and tetraniliprole 200 SC) with fungicides (picoxystrobin 7.5%+tricyclazole 22.5% SC and tebuconazole 50%+trifloxystrobin 25% WG) were administered via drones and compared with conventional Taiwan sprayer. The results indicated that tebuconazole+trifloxystrobin, when applied via drones, exhibited the highest control efficacy against the brown spot, sheath blight, and sheath rot (47.8%, 77.4%, and 75.2% respectively). Moreover, combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), applied using a drone, achieved the most effective control (78.1%) against grain discoloration. Additionally, drone-based tetraniliprole application showed effectiveness against stem borer and whorl maggot (efficacy rates of 49.1%, 66.6%, and 60.7% for dead hearts, white ear, and whorl maggot, respectively). Overall, the pesticide combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), showed higher control efficacy against all the insect pests and diseases and recorded the highest grain yield of 7995 kg/hm2 with an incremental cost-benefit ratio (ICBR) of (1:5.63) when sprayed with a drone. Overall, this study underscores the potential of drone-assisted pesticide application in effectively managing multiple insect pests and diseases in rice, offering superior precision, efficacy, efficiency, and yield.展开更多
This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions...This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.展开更多
文摘Unmanned Aerial Vehicles (UAVs) have emerged as innovative tools in agriculture, revolutionizing crop protection practices and the use of pesticide combinations to aid the management of insect pests and diseases in a single application. This research delves into assessing the efficacy of drone-based pesticide spraying utilizing combinations of pesticides to combat insect pests and diseases in rice cultivation. In kharif 2022, the physically compatible combination of insecticides (chlorantraniliprole 18.5% SC and tetraniliprole 200 SC) with fungicides (picoxystrobin 7.5%+tricyclazole 22.5% SC and tebuconazole 50%+trifloxystrobin 25% WG) were administered via drones and compared with conventional Taiwan sprayer. The results indicated that tebuconazole+trifloxystrobin, when applied via drones, exhibited the highest control efficacy against the brown spot, sheath blight, and sheath rot (47.8%, 77.4%, and 75.2% respectively). Moreover, combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), applied using a drone, achieved the most effective control (78.1%) against grain discoloration. Additionally, drone-based tetraniliprole application showed effectiveness against stem borer and whorl maggot (efficacy rates of 49.1%, 66.6%, and 60.7% for dead hearts, white ear, and whorl maggot, respectively). Overall, the pesticide combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), showed higher control efficacy against all the insect pests and diseases and recorded the highest grain yield of 7995 kg/hm2 with an incremental cost-benefit ratio (ICBR) of (1:5.63) when sprayed with a drone. Overall, this study underscores the potential of drone-assisted pesticide application in effectively managing multiple insect pests and diseases in rice, offering superior precision, efficacy, efficiency, and yield.
基金Supported by Science and Technology Innovation Guidance Project of Zhaoqing in 2023(2023040308006)Major Science and Technology Special Project of Yunnan Province(202202AE090036)+1 种基金Open Project of Yunnan State Key Laboratory for Conservation and Utilization of Bio-Resources(gzkf2022004)Innovation Platform Construction Project of Zhaoqing University in 2024(202413004).
文摘This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.