In order to study the feasibility of treating petro chemical wastewater by the combination of anaerobic and aerobic biological process, a research of treating wastewater in UASB reactor and aeration basin has been co...In order to study the feasibility of treating petro chemical wastewater by the combination of anaerobic and aerobic biological process, a research of treating wastewater in UASB reactor and aeration basin has been conducted. The test results shows that under moderate temperature, with 5\^2 kgCOD/(m\+3·d) volumetric load of COD Cr in the UASB reactor and 24h of HRT, 85% removal rate of BOD 5 and 83% of COD \{Cr\} and 1\^34 m\+3/(m\+3·d) volumetric gas production rate can be obtained respectively. The aerobic bio degradability can be increased by 20%—30% after the petro chemical wastewater has been treated by anaerobic process. As Ns=0\^45 kgCOD/(kgMLSS·d), HRT=4h in the aeration tank, 94% removal rate of BOD 5, 93% of COD \{Cr\}, 98\^8% total removal rate of COD \{Cr\} and 99% removal rate of BOD 5 can be reached.展开更多
This study aims to contribute to improve knowledge on geological formations of Comoé basin. The petrographic study of the geological formations of Koun Fao has highlighted two major lithological families: magmati...This study aims to contribute to improve knowledge on geological formations of Comoé basin. The petrographic study of the geological formations of Koun Fao has highlighted two major lithological families: magmatic rocks consisting of monzonites, monzogranites, diorites, biotite granodiorites, syenites, porphyritic micromonzonites and porphyritic dacite and metamorphic rocks from sedimentary origin (quartz schists, meta-greywackes, schists, andalusite chloritoschist and paragneiss). These formations are affected by amphibolite to greenschist facies metamorphism and hydrothermal alteration (pervasive and vein) marked by the presence of quartz, epidotes, chlorites and sericite. Minerals such as andalusite, muscovite and chlorite characterize a local low pressure contact metamorphism in the andalusite chloritoschist. Remote sensing data (Landsat 8 image) coupled with field data allowed the production of a geological map of the area. The study of the structures and microstructures highlighted two deformation mechanisms. These are flattening and simple shear (ductile and brittle). The study area is affected by four deformation phases: D1 marked by a N-S to NNE-SSW elongation, D2 marked by a NW-SE to NNW-SSE compression phase, D3 which is a NE-SW to NNE-SSW transpression phase and D4, responsible for late structures, marked by a NW-SE to NNW-SSE transpression phase.展开更多
The Gold District of Korhogo, in the northern region of C?te d’Ivoire, holds enormous potential for gold mineralizations, some of which are under exploration phase and others in exploitation phase (example of Tongon ...The Gold District of Korhogo, in the northern region of C?te d’Ivoire, holds enormous potential for gold mineralizations, some of which are under exploration phase and others in exploitation phase (example of Tongon Gold Mine). Dormant since 1998, Mapping Services of most of the West African countries hardly provide geological maps at the scales of: 1/200,000, 1/50,000 and 1/25,000. This situation of unavailability of detailed geological maps does not help mining operators in the selection of prolific areas and also in the interpretation of in soil geochem anomies or gold mineralizations. Consequently, during the years 2020 and 2021, we have undertaken a campaign of geological mapping and petro-structural study of the northern sector of Komborodougou, located in the southern extension of Banfora Birimian Belt. This work, which allowed the realization of a geological map at 1/20,000 scale, reveals that: the mapped area includes three (3) major lithological units: 1) a volcano-sedimentary unit made up of metasediments (metaarenites, metasiltites and metaflyschs) and metavolcanites (metabasalts), which are metamorphosed and outcrop in the form of schists;2) a metaplutonic and intrusive unit composed on the one hand of quartz-diorites and metagabbros, and on the other hand of granites and granodiorites;3) and finally, a unit of dikes formed by microgranites, microgabbros, aplites and quartzites. The volcano-sedimentary complex is affected by a regional fold with an axis subparallel to the regional tectonic grain and an S1 schistosity oriented NE-SW to NNE-SSW with steep dips (>60o), except for those of the metaflyschs which are weak (o);a regional NW-SE compression would be at the origin of the setting of this schistosity. The volcano-sediment and metaplutonite complex is crossed in a NNE-SSW direction by a senetral shear-zone or main shear-zone and secondary shear-zones oriented sometimes NE-SW or N-S. These shear-zones are intersected by more or less dextral or senestral strike-slip faults of NW-SE and E-W trends. N-S to NNE-SSW (N0o - N20o) and NW-SE (N130o - N160o) vein systems associated with the various shear-zones are the hosts of the gold mineralization in the region. These veins have been mined by orpaillors for more than two decades. The northern sector of Komborodougou is in the NNE continuity of the gold mineralization highlighted by the mining company Mako Gold Sarl on its Gogbala and Tchaga prospects, Napie project.展开更多
Studies carried out in the Gontougo region aimed to describe the physical and petro-structural properties of the Tarkwaian formations of northeastern Côte d’Ivoire. The methodology developed is focused on the on...Studies carried out in the Gontougo region aimed to describe the physical and petro-structural properties of the Tarkwaian formations of northeastern Côte d’Ivoire. The methodology developed is focused on the one hand on the gravimetric geophysical method and on the other hand, on petro-structural studies. The geophysical results highlighted two gravimetric facies characterized respectively by high density (ΔBg > 121 mGal) and low density (ΔBg < 114 mGal) anomalies. From a lithological point of view, the denser domains are made up of intrusive rocks dominated by granodiorites and tonalites cutting low density facies composed of Tarkwaian formations (polygenic conglomerates and arkosic sandstones) and volcanics (tuffs and cinerites). Structurally, these different lithological groups are affected by brittle (fractures, faults, strike-slip) and ductile (folds, schistosities and mineral lineations) deformations. These structures are mainly oriented NNW-SSW, WNW-ESE and NE-SW. The description of the sulphide minerals reveals a style of gold mineralization of the Tarkwaian formations.展开更多
The study of Birimian granitoids is of great importance because it allows us to understand the architecture of the West African crust and the processes that shaped it. In order to contribute to the improvement of know...The study of Birimian granitoids is of great importance because it allows us to understand the architecture of the West African crust and the processes that shaped it. In order to contribute to the improvement of knowledge on the geodynamic context of the emplacement of certain granitoids of the West African craton, this article addresses some essential problems of the Birimian, namely distinguishing the real nature of the magmas and the mechanisms that generated this Birimian crust. On the West African craton, there are intrusive granites in volcano-sedimentary furrows, in meta-sedimentary basins and granites that form batholiths separating these structures. To provide an answer to this scientific concern, we conducted a comparative study of the granitoids of the Comoé basin (Tiassalé region) and those of the large batholith of Ferkessédougou (Daloa region). From this study, it appears that these Birimian granitoids have been identified as granites, granodiorites and tonalites in the Tiassalé region while in Daloa, they are assimilated to anatexites and granites. They present very diverse aspects and contexts of emplacement: the granitoids of the Comoé basin have characteristics of type I granite, indicating direct crystallization of mantle magmas in a syntectonic emplacement, while in the Daloa region, some granitoids are magmatic, others migmatitic or metasomatic, reflecting a certain complexity relating to their genesis.展开更多
文摘In order to study the feasibility of treating petro chemical wastewater by the combination of anaerobic and aerobic biological process, a research of treating wastewater in UASB reactor and aeration basin has been conducted. The test results shows that under moderate temperature, with 5\^2 kgCOD/(m\+3·d) volumetric load of COD Cr in the UASB reactor and 24h of HRT, 85% removal rate of BOD 5 and 83% of COD \{Cr\} and 1\^34 m\+3/(m\+3·d) volumetric gas production rate can be obtained respectively. The aerobic bio degradability can be increased by 20%—30% after the petro chemical wastewater has been treated by anaerobic process. As Ns=0\^45 kgCOD/(kgMLSS·d), HRT=4h in the aeration tank, 94% removal rate of BOD 5, 93% of COD \{Cr\}, 98\^8% total removal rate of COD \{Cr\} and 99% removal rate of BOD 5 can be reached.
文摘This study aims to contribute to improve knowledge on geological formations of Comoé basin. The petrographic study of the geological formations of Koun Fao has highlighted two major lithological families: magmatic rocks consisting of monzonites, monzogranites, diorites, biotite granodiorites, syenites, porphyritic micromonzonites and porphyritic dacite and metamorphic rocks from sedimentary origin (quartz schists, meta-greywackes, schists, andalusite chloritoschist and paragneiss). These formations are affected by amphibolite to greenschist facies metamorphism and hydrothermal alteration (pervasive and vein) marked by the presence of quartz, epidotes, chlorites and sericite. Minerals such as andalusite, muscovite and chlorite characterize a local low pressure contact metamorphism in the andalusite chloritoschist. Remote sensing data (Landsat 8 image) coupled with field data allowed the production of a geological map of the area. The study of the structures and microstructures highlighted two deformation mechanisms. These are flattening and simple shear (ductile and brittle). The study area is affected by four deformation phases: D1 marked by a N-S to NNE-SSW elongation, D2 marked by a NW-SE to NNW-SSE compression phase, D3 which is a NE-SW to NNE-SSW transpression phase and D4, responsible for late structures, marked by a NW-SE to NNW-SSE transpression phase.
文摘The Gold District of Korhogo, in the northern region of C?te d’Ivoire, holds enormous potential for gold mineralizations, some of which are under exploration phase and others in exploitation phase (example of Tongon Gold Mine). Dormant since 1998, Mapping Services of most of the West African countries hardly provide geological maps at the scales of: 1/200,000, 1/50,000 and 1/25,000. This situation of unavailability of detailed geological maps does not help mining operators in the selection of prolific areas and also in the interpretation of in soil geochem anomies or gold mineralizations. Consequently, during the years 2020 and 2021, we have undertaken a campaign of geological mapping and petro-structural study of the northern sector of Komborodougou, located in the southern extension of Banfora Birimian Belt. This work, which allowed the realization of a geological map at 1/20,000 scale, reveals that: the mapped area includes three (3) major lithological units: 1) a volcano-sedimentary unit made up of metasediments (metaarenites, metasiltites and metaflyschs) and metavolcanites (metabasalts), which are metamorphosed and outcrop in the form of schists;2) a metaplutonic and intrusive unit composed on the one hand of quartz-diorites and metagabbros, and on the other hand of granites and granodiorites;3) and finally, a unit of dikes formed by microgranites, microgabbros, aplites and quartzites. The volcano-sedimentary complex is affected by a regional fold with an axis subparallel to the regional tectonic grain and an S1 schistosity oriented NE-SW to NNE-SSW with steep dips (>60o), except for those of the metaflyschs which are weak (o);a regional NW-SE compression would be at the origin of the setting of this schistosity. The volcano-sediment and metaplutonite complex is crossed in a NNE-SSW direction by a senetral shear-zone or main shear-zone and secondary shear-zones oriented sometimes NE-SW or N-S. These shear-zones are intersected by more or less dextral or senestral strike-slip faults of NW-SE and E-W trends. N-S to NNE-SSW (N0o - N20o) and NW-SE (N130o - N160o) vein systems associated with the various shear-zones are the hosts of the gold mineralization in the region. These veins have been mined by orpaillors for more than two decades. The northern sector of Komborodougou is in the NNE continuity of the gold mineralization highlighted by the mining company Mako Gold Sarl on its Gogbala and Tchaga prospects, Napie project.
文摘Studies carried out in the Gontougo region aimed to describe the physical and petro-structural properties of the Tarkwaian formations of northeastern Côte d’Ivoire. The methodology developed is focused on the one hand on the gravimetric geophysical method and on the other hand, on petro-structural studies. The geophysical results highlighted two gravimetric facies characterized respectively by high density (ΔBg > 121 mGal) and low density (ΔBg < 114 mGal) anomalies. From a lithological point of view, the denser domains are made up of intrusive rocks dominated by granodiorites and tonalites cutting low density facies composed of Tarkwaian formations (polygenic conglomerates and arkosic sandstones) and volcanics (tuffs and cinerites). Structurally, these different lithological groups are affected by brittle (fractures, faults, strike-slip) and ductile (folds, schistosities and mineral lineations) deformations. These structures are mainly oriented NNW-SSW, WNW-ESE and NE-SW. The description of the sulphide minerals reveals a style of gold mineralization of the Tarkwaian formations.
文摘The study of Birimian granitoids is of great importance because it allows us to understand the architecture of the West African crust and the processes that shaped it. In order to contribute to the improvement of knowledge on the geodynamic context of the emplacement of certain granitoids of the West African craton, this article addresses some essential problems of the Birimian, namely distinguishing the real nature of the magmas and the mechanisms that generated this Birimian crust. On the West African craton, there are intrusive granites in volcano-sedimentary furrows, in meta-sedimentary basins and granites that form batholiths separating these structures. To provide an answer to this scientific concern, we conducted a comparative study of the granitoids of the Comoé basin (Tiassalé region) and those of the large batholith of Ferkessédougou (Daloa region). From this study, it appears that these Birimian granitoids have been identified as granites, granodiorites and tonalites in the Tiassalé region while in Daloa, they are assimilated to anatexites and granites. They present very diverse aspects and contexts of emplacement: the granitoids of the Comoé basin have characteristics of type I granite, indicating direct crystallization of mantle magmas in a syntectonic emplacement, while in the Daloa region, some granitoids are magmatic, others migmatitic or metasomatic, reflecting a certain complexity relating to their genesis.