In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship...In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.展开更多
基金supported by the National Natural Science Foundation of China(6167309361370152)the Science and Technology Project of Shenyang(F16-205-1-01)
文摘In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.