Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, ...Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.展开更多
Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages...Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.展开更多
This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability ...This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability as the number of components increases to a large scale. The states merging method proposed in this paper can account for the PMS with subsystems consisting of identical components, and similar PMSs are common in real-world systems. The simplified Markov model by states merging has smaller number of system states, compared with the traditional one. Furthermore, for the above subsystems, the size of our model increases only linearly as the number of components increases, while the size of the traditional model exponentially increases.Finally, the effectiveness and correctness of our approach are analyzed by comparing with the traditional Markov method.展开更多
As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
Aviation and aerospace system are typical Phased-Mission Systems(PMSs)featured with varying configuration,phased load condition and cross phase failure correlation.The coupling effect of Functional Dependency(FDEP)and...Aviation and aerospace system are typical Phased-Mission Systems(PMSs)featured with varying configuration,phased load condition and cross phase failure correlation.The coupling effect of Functional Dependency(FDEP)and Physical Dependency(PDEP)has a unique influence on the failure behavior of PMS.In this article,the coupling effect is analyzed,and the degradation of components is modeled with the positive drift wiener process,in which the drift coefficient is related to environmental conditions and operation stress.Finally,failure behavior and system reliability are simulated.An avionics controller is studied as a case,with the degradation time distribution model and simulation algorithm,the coupling effect and dynamical system reliability can be achieved.Results show that this modeling method can describe the coupling effects of FDEP and PDEP and their influence on the failure behavior and reliability of the PMS system.展开更多
A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure freq...A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure frequency or probability of the system. Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models. The process of generating these models is time consuming and reduces the impact of the model on the system design. One way to improve this would be to generate the model automatically. In this work, the procedure to automatically construct a model, based on Petri nets, for systems undergoing a phased-mission is applied to a pressure tank system, undertaking a four phase mission.展开更多
基金supported by the Natural Science Foundation of China(61174156 61273189+5 种基金 61174035 61374179 U1435218 6140340171401168)the Army Equipment Research Foundation(012016012600B12507)
文摘Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.
基金Supported by National Outstanding Youth Science Foundation of China (No.79725002)
文摘Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.
基金the National Natural Science Foundation of China(No.71401172)
文摘This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability as the number of components increases to a large scale. The states merging method proposed in this paper can account for the PMS with subsystems consisting of identical components, and similar PMSs are common in real-world systems. The simplified Markov model by states merging has smaller number of system states, compared with the traditional one. Furthermore, for the above subsystems, the size of our model increases only linearly as the number of components increases, while the size of the traditional model exponentially increases.Finally, the effectiveness and correctness of our approach are analyzed by comparing with the traditional Markov method.
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
基金funded by the National Natural Science Foundation of China(No.61503014)。
文摘Aviation and aerospace system are typical Phased-Mission Systems(PMSs)featured with varying configuration,phased load condition and cross phase failure correlation.The coupling effect of Functional Dependency(FDEP)and Physical Dependency(PDEP)has a unique influence on the failure behavior of PMS.In this article,the coupling effect is analyzed,and the degradation of components is modeled with the positive drift wiener process,in which the drift coefficient is related to environmental conditions and operation stress.Finally,failure behavior and system reliability are simulated.An avionics controller is studied as a case,with the degradation time distribution model and simulation algorithm,the coupling effect and dynamical system reliability can be achieved.Results show that this modeling method can describe the coupling effects of FDEP and PDEP and their influence on the failure behavior and reliability of the PMS system.
文摘A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure frequency or probability of the system. Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models. The process of generating these models is time consuming and reduces the impact of the model on the system design. One way to improve this would be to generate the model automatically. In this work, the procedure to automatically construct a model, based on Petri nets, for systems undergoing a phased-mission is applied to a pressure tank system, undertaking a four phase mission.