A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modif...A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modified walnut shell its adsorption of Cr(Ⅵ) was better. When the temperature was 35 ℃, adsorbent particle size was 1.0-1.6 mm, shaker shock rate was 200 r/min, and dosage of walnut shell was 0.80 g, the Cr(Ⅵ) removal rate reached 99.4%. The fitting of adsorption isotherm and kinetics model showed that, Langmuir isotherm model could reflect the adsorption process of modified walnut shell; and both the adsorption processes of ordinary and modified walnut shells accorded with the pseudo-second-order kinetic equations.展开更多
A series of HZSM-5 zeolites modified with different amounts of phosphoric acid(P/HZSM-5) was prepared. The physicochemical features of the P/HZSM-5 catalysts were characterized via X-ray diffraction(XRD), N2 adsor...A series of HZSM-5 zeolites modified with different amounts of phosphoric acid(P/HZSM-5) was prepared. The physicochemical features of the P/HZSM-5 catalysts were characterized via X-ray diffraction(XRD), N2 adsorption-desorption, NH3-temperatttre programmed desorption(NH3-TPD) and Fourier tranform infrared(FTIR) spectra of the adsorbed pyridine, and the performances of the catalysts for Prins condensation to isoprene from isobutylene and formaldehyde were investigated. The maximum isobutene conversion and isoprene selectivity were 10.3% and 94.6% on the HZSM-5 catalyst with a Si/A1 molar ratio of 600 using 5%(mass fraction) phosphoric acid. The phosphoric acid modification not only modulated the amount of acidic sites but also regulated the acid type. An appropriate amount of weak Lewis and Bronsted acid sites served as the active sites for the condensation of isobutene with formaldehyde, and the strong acid sites could cause side reactions and coke deposition.展开更多
The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic ...The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic properties of 1% phosphorus and steam modified HZSM-5 zeolites have been investigated. The X-ray diffraction (XRD) results exhibit that there is considerable variation in the relative intensity of the individual diffraction peaks. The acidity of the samples decreases with an increase in the steaming temperature, which is determined by the IR of adsorbed pyridine and temperature programmed desorption (TPD) of ammonia. The oxidation state of phosphorus shown by XPS is +5, and a model for surface structure modification is proposed. The nitrogen adsorption isotherm for all samples is a combination of type I and type IV, all hysteresis loops resemble the H4-type. The density functional and cluster model methods have been invoked to select the phosphorus grafting model, and it was found that the phosphorus grafting model were more probable in the form of the terminal oxygen coordinating with aluminum.展开更多
基金Supported by National Natural Science Foundation of China(51168013)National Key Technology Support Program(2014BAC04B03)~~
文摘A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modified walnut shell its adsorption of Cr(Ⅵ) was better. When the temperature was 35 ℃, adsorbent particle size was 1.0-1.6 mm, shaker shock rate was 200 r/min, and dosage of walnut shell was 0.80 g, the Cr(Ⅵ) removal rate reached 99.4%. The fitting of adsorption isotherm and kinetics model showed that, Langmuir isotherm model could reflect the adsorption process of modified walnut shell; and both the adsorption processes of ordinary and modified walnut shells accorded with the pseudo-second-order kinetic equations.
文摘A series of HZSM-5 zeolites modified with different amounts of phosphoric acid(P/HZSM-5) was prepared. The physicochemical features of the P/HZSM-5 catalysts were characterized via X-ray diffraction(XRD), N2 adsorption-desorption, NH3-temperatttre programmed desorption(NH3-TPD) and Fourier tranform infrared(FTIR) spectra of the adsorbed pyridine, and the performances of the catalysts for Prins condensation to isoprene from isobutylene and formaldehyde were investigated. The maximum isobutene conversion and isoprene selectivity were 10.3% and 94.6% on the HZSM-5 catalyst with a Si/A1 molar ratio of 600 using 5%(mass fraction) phosphoric acid. The phosphoric acid modification not only modulated the amount of acidic sites but also regulated the acid type. An appropriate amount of weak Lewis and Bronsted acid sites served as the active sites for the condensation of isobutene with formaldehyde, and the strong acid sites could cause side reactions and coke deposition.
文摘The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic properties of 1% phosphorus and steam modified HZSM-5 zeolites have been investigated. The X-ray diffraction (XRD) results exhibit that there is considerable variation in the relative intensity of the individual diffraction peaks. The acidity of the samples decreases with an increase in the steaming temperature, which is determined by the IR of adsorbed pyridine and temperature programmed desorption (TPD) of ammonia. The oxidation state of phosphorus shown by XPS is +5, and a model for surface structure modification is proposed. The nitrogen adsorption isotherm for all samples is a combination of type I and type IV, all hysteresis loops resemble the H4-type. The density functional and cluster model methods have been invoked to select the phosphorus grafting model, and it was found that the phosphorus grafting model were more probable in the form of the terminal oxygen coordinating with aluminum.