Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl ha...Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl halides in an artificial seawater system using guaiacol as a precursor through laboratory simulation experiments.The influences of various environmental factors,including illumination time,radiation wavebands,illumination intensity,concentrations of guaiacol and halide ions(X^(-)),Fe^(3+),salinity,dissolved oxygen(DO),and pH value on the photochemical production of methyl halides were examined.We demonstrated that increased illumination intensity and duration promote the photochemical production of methyl halides,with a notable enhancement under UV-B radiation.Guaiacol and halide ions were identified as key precursors,and their high concentrations facilitated the formation of methyl halides.Additionally,different types of halide ions exhibited a competitive relationship in producing methyl halides.The study found that an increase in pH inhibited the photochemical formation of CH_(3)I due to the reaction between OH^(-)and·CH_(3).Dissolved oxygen was found to inhibit the photochemical formation of CH3I while promoting the formation of CH_(3)Cl.Conversely,an appropriate concentration of Fe^(3+)enhanced the photochemical production of methyl halides.Field observations indicated a high photochemical production of methyl halides in the natural waters near Qingdao’s coastal area,likely due to the high concentration of dissolved organic matter(DOM),which supports photochemical reactions.Furthermore,the photochemical production of methyl halides in natural seawater was significantly higher than in dark conditions,underscoring the importance of illumination in promoting these photochemical processes in seawater.展开更多
Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to...Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parame...The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parameters. A greenhouse experiment was conducted using cotton and peanut crops under water stress condition. Five cotton and six peanut cultivars were grown using Andosole soil in pots maintained at two water levels; the control and water stress treatment (WS) of 100 and 50% of the daily transpiration, respectively. Higher non-photochemical quenching (NPQ) was exhibited by peanut than that of cotton by the water stress. On the other hand, the decreases of the actual quantum yield of photosystem II (△F/F'm) and PRI by the water stress in cotton were larger than those in peanut. There were positively significant correlation coefficients between PRI and △F/F'm in cotton at noon and in the afternoon including the control and WS. The correlations of PRI with NPQ were negatively significant at noon and in the afternoon for cotton, and in the afternoon for peanut. No clear relationship was found among these parameters in the morning probably due to the diurnal increase in global solar radiation. It was concluded that there would be a possibility to detect the effects of water stress on △F/F'm and NPQ by PRI with some exceptions, although PRI could not note varietals differences in △F/F'm and NPQ for each treatment.展开更多
A new rhodium(Ⅱ)porphyrin complex was isolated by chromatography from the photochemical reac- tion of(μ—tetraphenylporphyrinato)bis[dicarbonylrhodium(Ⅰ)]with pyridine in benzene and has been charac- terized.From t...A new rhodium(Ⅱ)porphyrin complex was isolated by chromatography from the photochemical reac- tion of(μ—tetraphenylporphyrinato)bis[dicarbonylrhodium(Ⅰ)]with pyridine in benzene and has been charac- terized.From the results,the reaction mechanism is proposed.展开更多
The oxygen evolution, thermal dissipation, and photochemical energy storage of three hybrid poplar clones, namely the triploid clone B342, the diploid clone B11 [(Populus alba×P. glandulosa)×(P.tomentosa...The oxygen evolution, thermal dissipation, and photochemical energy storage of three hybrid poplar clones, namely the triploid clone B342, the diploid clone B11 [(Populus alba×P. glandulosa)×(P.tomentosa×P.bolleana)], and the triploid clone B346 [(P.tomentosa×P. bolleana)×(P. alba×P.glandulosa)], under light stress were studied using photoacoustics. The oxygen evolution signal and photochemical energy storage varied negatively with the pretreatment_PFD (photon flux density), whereas the thermal signal varied positively with the pretreatment_PFD. Photochemical energy storage was reallocated to PSⅡ more than to PSⅠ, while the photochemical energy storage in PSⅠ was more stable than that in PSⅡ when subjected to light stress. The inhibitors streptomycin (SM), dithiothreitol (DTT) and sodium fluoride (NaF) could all affect the oxygen evolution signal. Clones B11 and B342 were more resistant to light stress than clone B346.展开更多
In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the p...In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the polluted areas of China. Over the past decade, China has suffered severe photochemical smog and haze pollution, especially in North China, the Yangtze River Delta, and the Pearl River Delta. Much scientific work on atmospheric chemistry and physics has been done to address this large-scale, complex environmental problem. Intensive field experiments, satellite data analyses, and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China. In addition to strong emissions of primary pollutants, photochemical and heterogeneous reactions play key roles in the formation of complex pollution. More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban, regional, and global scales.展开更多
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low e...A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.展开更多
The photochemical air pollution in Xigu district of Lanshou city, Gansu Province was studied during a period of 1981-1984. The extremely high NMHC/NOx ratio and ozone level elevation after rain have been noticed. A se...The photochemical air pollution in Xigu district of Lanshou city, Gansu Province was studied during a period of 1981-1984. The extremely high NMHC/NOx ratio and ozone level elevation after rain have been noticed. A series of outdoor and indoor reaction chamber simulation experiments conducted in order to understand the specific conditions. The ozone formation under NMHC/NOx condition and the possible reason for high ozone concentration after rain are discussed.展开更多
Air pollution in modern city and industrial zones has become a serious public concern in recent years in China. Significance of air quality assessment and emission control strategy design is increasing. Most studies i...Air pollution in modern city and industrial zones has become a serious public concern in recent years in China. Significance of air quality assessment and emission control strategy design is increasing. Most studies in China focus on particulate matter(PM), especially PM2.5, while few account for photochemical secondary air pollutions represented by ozone(O3). In this paper, a procedure for air quality simulation with comprehensive air quality model with extensions(CAMx) is demonstrated for studying the photochemical process and ozone generation in the troposphere. As a case study, the CAMx photochemical grid model is used to model ozone over southern part of Beijing city in winter, 2011. The input parameters to CAMx include emission sources, meteorology field data, terrain definition, photolysis status, initial and boundary conditions. The simulation results are verified by theoretical analysis of the ozone generation tendency. The simulated variation tendency of domain-wide average value of hourly ozone concentration coincides reasonably well with the theoretical analysis on the atmospheric photochemical process, demonstrating the effectiveness of the procedure. An integrated model system that cooperates with CAMx will be established in our future work.展开更多
Objective To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Methods Seventy...Objective To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Methods Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Results Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P<0.005-0.0001), while the average value of LPO in erythrocytes in the WOs group was significantly increased (P<0.0001). The findings from the partial correlation analysis on the controlling of age suggested that with a prolonged duration of exposure to photochemical smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P<0.05-0.005), the value of LPO in the WOs was increased gradually (P<0.001), and that with the ozone dose increased in the air in each worksite VC, VE, SOD, CAT and GPX decreased (P<0.005-0.001), but LPO increased (P<0.001). The findings from the reliability analysis for the VC, VE, SOD, CAT, GPX, and LPO values which were used to reflect oxidative stress and potential oxidative damage in the WOs showed that the reliability coefficients?alpha (6 items) was 0.8021, P<0.0001, and that the standardized item alpha was 0.9577, P<0.0001. Conclusion Findings in the present study suggest that there exists an oxidative stress induced by long-term exposure to photochemical smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.展开更多
The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as...The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as MOC-Py-M(M=H,Cu,and Zn),are designed for PMDs by combining metalloporphyrin-based ligands with catalytically active Pd^(2+)centers.These metal-organic cages(MOCs)are first successfully hybridized with graphitic carbon nitride(g-C_(3)N_(4))to form direct Z-scheme heterogeneous MOC-Py-M/g-C_(3)N_(4)(M=H,Cu,and Zn)photocatalysts via π-πinteractions.Benefiting from its better light absorption ability,the MOC-Py-Zn/g-C_(3)N_(4) catalyst exhibits high H_(2) production activity under visible light(10348μmol g^(-1) h^(-1)),far superior to MOC-Py-H/g-C_(3)N_(4) and MOC-Py-Cu/g-C_(3)N_(4).Moreover,the MOC-Py-Zn/g-C_(3)N_(4) system obtains an enhanced turn over number(TON)value of 32616 within 100 h,outperforming the homogenous MOC-Py-Zn(TON of 507 within 100 h),which is one of the highest photochemical hybrid systems based on MOC for visible-light-driven hydrogen generation.This confirms the direct Z-scheme heterostructure can promote effective charge transfer,expand the visible light absorption region,and protect the cages from decomposition in MOC-Py-Zn/g-C_(3)N_(4).This work presents a creative example that direct Z-scheme PMD-based systems for effective and persistent hydrogen generation from water under visible light are obtained by heterogenization approach using homogeneous porphyrin-based MOCs and g-C_(3)N_(4) semiconductors.展开更多
Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused muc...Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused much attention owing to its simple procedure and mild preparation conditions involved.In the present study,we demonstrate the application of the photochemical method to synthesize atomically dispersed Pd catalysts on(001)‐exposed anatase nanocrystals and commercial TiO2(P25).The as‐prepared catalysts exhibit both high activity and stability in the hydrogenation of styrene and catalytic oxidation of CO.展开更多
The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinkin...The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinking self-association effect in HSA and BSA solutions is identified by the enhancement of RLS. The fluorescence quenching at about 350 nm and 700 nm proves that tryptophan (Trp) residues are one of the photochemical activity sites in HSA and BSA molecules. The Rayleigh scattering (RS) spectra of HSA and BSA that were neglected in fluorescence spectra before are found at about 296 nm, 592 nm and 888 nm for the first time, and are of adventageous to studying the aggregation of HSA or BSA. The possible photochemical reaction mechanism is also proposed.展开更多
Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with i...Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(Ⅲ) initiated degradation of PFOA irradiated with 254 nm UV light.展开更多
A series of experiments were conducted in a self-made smog chamber at (300 + 1) K and 1.01 × 10^5 Pa to simulate the photochemical reaction of ethyl methyl sulfide (EMS) and NOx. The results showed that the ...A series of experiments were conducted in a self-made smog chamber at (300 + 1) K and 1.01 × 10^5 Pa to simulate the photochemical reaction of ethyl methyl sulfide (EMS) and NOx. The results showed that the higher the initial concentration of EMS, the more ozone was generated in the simulative reactions. It was found that the light intensity plays a very important role in the evaluation of ozone formation potential for EMS. The parameters of d(Oa-NO) and IR (incremental reactivity) were used to quantify the potential of EMS on ozone formation. The obtained maximum IR values in this article for the five simulative reactions were 1.55 × 10^-2, 0.99 × 10^-2, 1.36 × 10^-2, 2.47 × 10^-2, and 1.65 × 10^-2, respectively. A comparison between the results we obtained here and the results we obtained previously for di-tert-butyl peroxide and acetylene showed that the potential reactivity of EMS on ozone formation was at a relatively low level.展开更多
Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results sh...Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.展开更多
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref...A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.展开更多
The photochemical reaction of magnesium tetraphenyl porphyrin (MgTPP) with O2 was studied in CH2Cl2 by steady-state fluorescence, UV-vis absorption, FTIR and MALDI-TOF MS measurements. These spectra indicate that O2...The photochemical reaction of magnesium tetraphenyl porphyrin (MgTPP) with O2 was studied in CH2Cl2 by steady-state fluorescence, UV-vis absorption, FTIR and MALDI-TOF MS measurements. These spectra indicate that O2 can react with MgTPP excited by irradiation, forming the stable 1:1 coordinated adduct of MgTPP-O2. In the adduct, the oxygen atoms of O2 may insert in the Mg-N bonds in MgTPP and bind with the nitrogen atoms of MgTPP to form N-O-Mg bonds.展开更多
The photochemical reaction of magnesium tetraphenyl porphyrin(MgTPP) with sulfur dioxide(SO_2) was investigated in dichloromethane(CH_2Cl_2) by steady-state fluorescence,UV-vis absorption,MS,and XRD spectroscopi...The photochemical reaction of magnesium tetraphenyl porphyrin(MgTPP) with sulfur dioxide(SO_2) was investigated in dichloromethane(CH_2Cl_2) by steady-state fluorescence,UV-vis absorption,MS,and XRD spectroscopic techniques.These spectra showed that under irradiation MgTPP reacted with SO_2 to form 1:1 molecular adduct at first step.During the process of keeping irradiation and maintaining the flow of SO_2,SO_2 was reduced into S^(2-) by MgTPP and the results were detected using MS and XRD techniques.Understanding the photochemical reaction of MgTPP with SO_2 is of key interest in elucidating fundamental photochemical reaction mechanisms associated with this class of chlorophyll in the presence of SO_2.展开更多
基金funded by the Natural Science Foundation of Shandong Province,China(No.ZR2021MD034)the National Natural Science Foundation of China(No.42276039).
文摘Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl halides in an artificial seawater system using guaiacol as a precursor through laboratory simulation experiments.The influences of various environmental factors,including illumination time,radiation wavebands,illumination intensity,concentrations of guaiacol and halide ions(X^(-)),Fe^(3+),salinity,dissolved oxygen(DO),and pH value on the photochemical production of methyl halides were examined.We demonstrated that increased illumination intensity and duration promote the photochemical production of methyl halides,with a notable enhancement under UV-B radiation.Guaiacol and halide ions were identified as key precursors,and their high concentrations facilitated the formation of methyl halides.Additionally,different types of halide ions exhibited a competitive relationship in producing methyl halides.The study found that an increase in pH inhibited the photochemical formation of CH_(3)I due to the reaction between OH^(-)and·CH_(3).Dissolved oxygen was found to inhibit the photochemical formation of CH3I while promoting the formation of CH_(3)Cl.Conversely,an appropriate concentration of Fe^(3+)enhanced the photochemical production of methyl halides.Field observations indicated a high photochemical production of methyl halides in the natural waters near Qingdao’s coastal area,likely due to the high concentration of dissolved organic matter(DOM),which supports photochemical reactions.Furthermore,the photochemical production of methyl halides in natural seawater was significantly higher than in dark conditions,underscoring the importance of illumination in promoting these photochemical processes in seawater.
基金supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577078)the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021)~~
文摘Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
文摘The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parameters. A greenhouse experiment was conducted using cotton and peanut crops under water stress condition. Five cotton and six peanut cultivars were grown using Andosole soil in pots maintained at two water levels; the control and water stress treatment (WS) of 100 and 50% of the daily transpiration, respectively. Higher non-photochemical quenching (NPQ) was exhibited by peanut than that of cotton by the water stress. On the other hand, the decreases of the actual quantum yield of photosystem II (△F/F'm) and PRI by the water stress in cotton were larger than those in peanut. There were positively significant correlation coefficients between PRI and △F/F'm in cotton at noon and in the afternoon including the control and WS. The correlations of PRI with NPQ were negatively significant at noon and in the afternoon for cotton, and in the afternoon for peanut. No clear relationship was found among these parameters in the morning probably due to the diurnal increase in global solar radiation. It was concluded that there would be a possibility to detect the effects of water stress on △F/F'm and NPQ by PRI with some exceptions, although PRI could not note varietals differences in △F/F'm and NPQ for each treatment.
基金Project Supported by Science Research Foundation of Zhongshan University,National Natural Science Foundation of P.R.China and Resarch Fund of Royal Society of Chemistry
文摘A new rhodium(Ⅱ)porphyrin complex was isolated by chromatography from the photochemical reac- tion of(μ—tetraphenylporphyrinato)bis[dicarbonylrhodium(Ⅰ)]with pyridine in benzene and has been charac- terized.From the results,the reaction mechanism is proposed.
文摘The oxygen evolution, thermal dissipation, and photochemical energy storage of three hybrid poplar clones, namely the triploid clone B342, the diploid clone B11 [(Populus alba×P. glandulosa)×(P.tomentosa×P.bolleana)], and the triploid clone B346 [(P.tomentosa×P. bolleana)×(P. alba×P.glandulosa)], under light stress were studied using photoacoustics. The oxygen evolution signal and photochemical energy storage varied negatively with the pretreatment_PFD (photon flux density), whereas the thermal signal varied positively with the pretreatment_PFD. Photochemical energy storage was reallocated to PSⅡ more than to PSⅠ, while the photochemical energy storage in PSⅠ was more stable than that in PSⅡ when subjected to light stress. The inhibitors streptomycin (SM), dithiothreitol (DTT) and sodium fluoride (NaF) could all affect the oxygen evolution signal. Clones B11 and B342 were more resistant to light stress than clone B346.
基金funded by the China Meteorological Administration (Grant Nos. GYHY 200706005, GYHY 201106023 and GYHY 201206015)
文摘In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the polluted areas of China. Over the past decade, China has suffered severe photochemical smog and haze pollution, especially in North China, the Yangtze River Delta, and the Pearl River Delta. Much scientific work on atmospheric chemistry and physics has been done to address this large-scale, complex environmental problem. Intensive field experiments, satellite data analyses, and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China. In addition to strong emissions of primary pollutants, photochemical and heterogeneous reactions play key roles in the formation of complex pollution. More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban, regional, and global scales.
文摘A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.
文摘The photochemical air pollution in Xigu district of Lanshou city, Gansu Province was studied during a period of 1981-1984. The extremely high NMHC/NOx ratio and ozone level elevation after rain have been noticed. A series of outdoor and indoor reaction chamber simulation experiments conducted in order to understand the specific conditions. The ozone formation under NMHC/NOx condition and the possible reason for high ozone concentration after rain are discussed.
文摘Air pollution in modern city and industrial zones has become a serious public concern in recent years in China. Significance of air quality assessment and emission control strategy design is increasing. Most studies in China focus on particulate matter(PM), especially PM2.5, while few account for photochemical secondary air pollutions represented by ozone(O3). In this paper, a procedure for air quality simulation with comprehensive air quality model with extensions(CAMx) is demonstrated for studying the photochemical process and ozone generation in the troposphere. As a case study, the CAMx photochemical grid model is used to model ozone over southern part of Beijing city in winter, 2011. The input parameters to CAMx include emission sources, meteorology field data, terrain definition, photolysis status, initial and boundary conditions. The simulation results are verified by theoretical analysis of the ozone generation tendency. The simulated variation tendency of domain-wide average value of hourly ozone concentration coincides reasonably well with the theoretical analysis on the atmospheric photochemical process, demonstrating the effectiveness of the procedure. An integrated model system that cooperates with CAMx will be established in our future work.
文摘Objective To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Methods Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Results Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P<0.005-0.0001), while the average value of LPO in erythrocytes in the WOs group was significantly increased (P<0.0001). The findings from the partial correlation analysis on the controlling of age suggested that with a prolonged duration of exposure to photochemical smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P<0.05-0.005), the value of LPO in the WOs was increased gradually (P<0.001), and that with the ozone dose increased in the air in each worksite VC, VE, SOD, CAT and GPX decreased (P<0.005-0.001), but LPO increased (P<0.001). The findings from the reliability analysis for the VC, VE, SOD, CAT, GPX, and LPO values which were used to reflect oxidative stress and potential oxidative damage in the WOs showed that the reliability coefficients?alpha (6 items) was 0.8021, P<0.0001, and that the standardized item alpha was 0.9577, P<0.0001. Conclusion Findings in the present study suggest that there exists an oxidative stress induced by long-term exposure to photochemical smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.
文摘The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as MOC-Py-M(M=H,Cu,and Zn),are designed for PMDs by combining metalloporphyrin-based ligands with catalytically active Pd^(2+)centers.These metal-organic cages(MOCs)are first successfully hybridized with graphitic carbon nitride(g-C_(3)N_(4))to form direct Z-scheme heterogeneous MOC-Py-M/g-C_(3)N_(4)(M=H,Cu,and Zn)photocatalysts via π-πinteractions.Benefiting from its better light absorption ability,the MOC-Py-Zn/g-C_(3)N_(4) catalyst exhibits high H_(2) production activity under visible light(10348μmol g^(-1) h^(-1)),far superior to MOC-Py-H/g-C_(3)N_(4) and MOC-Py-Cu/g-C_(3)N_(4).Moreover,the MOC-Py-Zn/g-C_(3)N_(4) system obtains an enhanced turn over number(TON)value of 32616 within 100 h,outperforming the homogenous MOC-Py-Zn(TON of 507 within 100 h),which is one of the highest photochemical hybrid systems based on MOC for visible-light-driven hydrogen generation.This confirms the direct Z-scheme heterostructure can promote effective charge transfer,expand the visible light absorption region,and protect the cages from decomposition in MOC-Py-Zn/g-C_(3)N_(4).This work presents a creative example that direct Z-scheme PMD-based systems for effective and persistent hydrogen generation from water under visible light are obtained by heterogenization approach using homogeneous porphyrin-based MOCs and g-C_(3)N_(4) semiconductors.
基金supported by the Ministry of Science and Technology of nano major research projects(2015CB932303)the National Natural Science Foundation of China(21420102001,21131005,21333008,21390390)~~
文摘Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused much attention owing to its simple procedure and mild preparation conditions involved.In the present study,we demonstrate the application of the photochemical method to synthesize atomically dispersed Pd catalysts on(001)‐exposed anatase nanocrystals and commercial TiO2(P25).The as‐prepared catalysts exhibit both high activity and stability in the hydrogenation of styrene and catalytic oxidation of CO.
基金the National Natural Science Foundation of China ! 29961001the Foundation for Talents Striding across the Century of Guangxi
文摘The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinking self-association effect in HSA and BSA solutions is identified by the enhancement of RLS. The fluorescence quenching at about 350 nm and 700 nm proves that tryptophan (Trp) residues are one of the photochemical activity sites in HSA and BSA molecules. The Rayleigh scattering (RS) spectra of HSA and BSA that were neglected in fluorescence spectra before are found at about 296 nm, 592 nm and 888 nm for the first time, and are of adventageous to studying the aggregation of HSA or BSA. The possible photochemical reaction mechanism is also proposed.
文摘Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(Ⅲ) initiated degradation of PFOA irradiated with 254 nm UV light.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No. KZCX2-YW-205)the National Natural Sci-ence Foundation of China (No. 20577052, 20673123,20503035).
文摘A series of experiments were conducted in a self-made smog chamber at (300 + 1) K and 1.01 × 10^5 Pa to simulate the photochemical reaction of ethyl methyl sulfide (EMS) and NOx. The results showed that the higher the initial concentration of EMS, the more ozone was generated in the simulative reactions. It was found that the light intensity plays a very important role in the evaluation of ozone formation potential for EMS. The parameters of d(Oa-NO) and IR (incremental reactivity) were used to quantify the potential of EMS on ozone formation. The obtained maximum IR values in this article for the five simulative reactions were 1.55 × 10^-2, 0.99 × 10^-2, 1.36 × 10^-2, 2.47 × 10^-2, and 1.65 × 10^-2, respectively. A comparison between the results we obtained here and the results we obtained previously for di-tert-butyl peroxide and acetylene showed that the potential reactivity of EMS on ozone formation was at a relatively low level.
文摘Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.
基金supported by the Rural Development Administration(PJ013821032020),Republic of Korea。
文摘A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.
基金Jiangxi Boyuan Industry Co.Ltd.(Jiangxi Province,China).
文摘The photochemical reaction of magnesium tetraphenyl porphyrin (MgTPP) with O2 was studied in CH2Cl2 by steady-state fluorescence, UV-vis absorption, FTIR and MALDI-TOF MS measurements. These spectra indicate that O2 can react with MgTPP excited by irradiation, forming the stable 1:1 coordinated adduct of MgTPP-O2. In the adduct, the oxygen atoms of O2 may insert in the Mg-N bonds in MgTPP and bind with the nitrogen atoms of MgTPP to form N-O-Mg bonds.
基金financed by Yongfeng Boyuan Industry Co.,Ltd.,(Jiangxi province,China).Thanks to Professor Wenting Hua and Professor Hongcheng Gao(Peking University,China) for their suggestions on the photochemical interaction mechanism of MgTPP with SO_2.
文摘The photochemical reaction of magnesium tetraphenyl porphyrin(MgTPP) with sulfur dioxide(SO_2) was investigated in dichloromethane(CH_2Cl_2) by steady-state fluorescence,UV-vis absorption,MS,and XRD spectroscopic techniques.These spectra showed that under irradiation MgTPP reacted with SO_2 to form 1:1 molecular adduct at first step.During the process of keeping irradiation and maintaining the flow of SO_2,SO_2 was reduced into S^(2-) by MgTPP and the results were detected using MS and XRD techniques.Understanding the photochemical reaction of MgTPP with SO_2 is of key interest in elucidating fundamental photochemical reaction mechanisms associated with this class of chlorophyll in the presence of SO_2.