The formation of charge transfer complexes (CTC) between C-60 with metallophthalocyanine (MPc. M=Zn, Co) has been investigated in three mixed organic solvents. The MPc-C-60 CTC were characterized by using UV-Vis and f...The formation of charge transfer complexes (CTC) between C-60 with metallophthalocyanine (MPc. M=Zn, Co) has been investigated in three mixed organic solvents. The MPc-C-60 CTC were characterized by using UV-Vis and fluorescence spectra. The formation equilibrium constants (K) of CTC and their stoichiometry were determined. The foundation of CTC leads to a remarkable enhancement of the photoelectrochemical property. The CTC will provide a potential opportunity to develop a new applicable photoelectric material.展开更多
In this work, an efficient photocatalytic material was prepared directly on Indium tin oxide (ITO) glass substrates by fabricating Cu2S and graphene oxide onto graphene for photoelectrochemical (PEC) water splitting. ...In this work, an efficient photocatalytic material was prepared directly on Indium tin oxide (ITO) glass substrates by fabricating Cu2S and graphene oxide onto graphene for photoelectrochemical (PEC) water splitting. The double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide (RG/Cu2S/RG/GO) nanofilms were characterized, and an enhanced photoelectrochemical response in the visible region was discovered. The photocurrent density of the nanofilms for PEC water splitting was measured to be up to 1.98 mA/cm(2), which could be ascribed to the followings: (i) a higher efficiency of light-harvesting because of GO coupling with Cu2S that could broaden the absorbing solar spectrum and enhance the light utilization efficiency; (ii) a stepwise structure of band-edge levels in the Cu2S/GO electrode was constructed; (iii) double laminated electron accelerator (RG) was used in the Cu2S/GO materials to get better electron-injecting efficiency. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
As a traditional n-type semiconductor, TiO_(2)has good UV absorption ability and stable physical and chemical properties. However, its wide band gap and low oxygen evolution reaction(OER) activity limit its applicatio...As a traditional n-type semiconductor, TiO_(2)has good UV absorption ability and stable physical and chemical properties. However, its wide band gap and low oxygen evolution reaction(OER) activity limit its application in the field of photoelectrochemical(PEC) water splitting. In this work, a type-Ⅱ TiO2/CuNi2S4heterojunction photoanode is successfully constructed, which expanded the light absorption range to visible and enhanced the OER activity. Firstly, TiO2nanotubes(NTs) thin films are prepared on Ti substrates by two-step anodization, and then the bi-functional electrocatalytic material CuNi2S4is grown on TiO2NTs in the shape of nanosheets(NSs) in situ by solvothermal method. As a bi-functional electrocatalytic material, CuNi2S4has good visible light absorption property as well as OER catalytic activity. Compared with TiO_(2), the IPCE value of TiO_(2)/CuNi_(2)S_(4)is 2.59% at 635 nm, and that of TiO2is a mere 0.002%.The separation efficiency and injection efficiency increase from 2.49% and 31.52% to 3.61% and 87.77%, respectively. At 1.23 V vs. RHE, the maximum photocurrent density is 0.26 m A/cm^(2), which is 2.6 times than that of TiO2(0.11 m A/cm^(2)),and can be maintained at 0.25 m A/cm^(2)for at least 2 h under light illumination. Moreover, a hydrogen production rate of 4.21 μmol·cm^(-2)·h^(-1)is achieved within 2 h. This work provides a new idea for the application of TiO_(2)in the field of PEC water splitting and the construction of efficient and stable photoelectronic devices.展开更多
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage ...The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.展开更多
Carbon dots(CDs),as a unique zero-dimensional member of carbon materials,have attracted numerous attentions for their potential applications in optoelectronic,biological,and energy related fields.Recently,CDs as catal...Carbon dots(CDs),as a unique zero-dimensional member of carbon materials,have attracted numerous attentions for their potential applications in optoelectronic,biological,and energy related fields.Recently,CDs as catalysts for energy conversion reactions under multi-physical conditions such as light and/or electricity have grown into a research frontier due to their advantages of high visible light utilization,fast migration of charge carriers,efficient surface redox reactions and good electrical conductivity.In this review,we summarize the fabrication methods of CDs and corresponding CD nanocomposites,including the strategies of surface modification and heteroatom doping.The properties of CDs that concerned to the photo-and electro-catalysis are highlighted and detailed corresponding applications are listed.More importantly,as new non-contact detection technologies,transient photo-induced voltage/current have been developed to detect and study the charge transfer kinetics,which can sensitively reflect the complex electron separation and transfer behavior in photo-/electro-catalysts.The development and application of the techniques are reviewed.Finally,we discuss and outline the major challenges and opportunities for future CD-based catalysts,and the needs and expectations for the development of novel characterization technologies.展开更多
Quantum-sized CdS-coated TiO2 nanotube array (Q-CdS-TiO2 NTA) was fabricated by the modified successive ionic layer absorption and reaction method. Scanning electron microscope and transmission electron microscope i...Quantum-sized CdS-coated TiO2 nanotube array (Q-CdS-TiO2 NTA) was fabricated by the modified successive ionic layer absorption and reaction method. Scanning electron microscope and transmission electron microscope images showed the regular structure of TiO2 NTA, where quantum-sized CdS (diameter 〈10nm) deposited on both the inside and outside of TiO2 nanotube wall. Fabrication conditions including immersing cycles, calcination temperature and drying process were well optimized, and the Q-CdS-TiO2 NTA and its photoelectrochemical (PEC) properties were characterized by X-ray fluorescence spectrometer, UV-Vis diffuse reflectance spectra and photovoltage. Distinct increases in visible light absorption and photocurrent were observed as the immersing cycle was increased from 5 to 20 times. The additional drying process accelerated the CdS crystal growth rate, and thus, the fabrication time could be shortened accordingly. Calcination temperature influenced the PEC property of Q-CdS-TiO2 NTA deeply, and the optimized calcination temperature was found as 500 ℃. As the Q-CdS-TiO2 NTA was fabricated under such condition, the visible photocurrent density increased to 2.8 mA/cm and the photovoltage between 350 and 480 nm was enhanced by 2.33 times than that without calcination. This study is expected to optimize Q-CdS-TiO2 NTA fabrication conditions for the purpose of improving its PEC performance.展开更多
In this work,high quality uniform and dense nanostructured cobalt-doped zinc oxide(ZnO:Co)films were used as electron-transport layers in CH3NH3Pbl3-based planar heterojunction perovskite solar cells(PSCs)on a flexibl...In this work,high quality uniform and dense nanostructured cobalt-doped zinc oxide(ZnO:Co)films were used as electron-transport layers in CH3NH3Pbl3-based planar heterojunction perovskite solar cells(PSCs)on a flexible conductive substrate.Highly photo catalytically active ZnO:Co films were prepared by a low cost hydrothermal process using the aqueous solution of zinc nitrate hexahydrate,hexamethylenete-tramine and cobalt(II)nitrate hexahydrate.ZnO:Co films were deposited on indium tin oxide(ITO)covered polyethylene terephthalate(PET)flexible substrates.The growth was controlled by maintaining the autoclave temperature at 150℃for 4 h.The CH3NH3Pbl3 layer was deposited on the ZnO:Co films by spin coating.Spiro-OMeTAD was employed as a hole-transporting material.The structural,morphology and optical properties of the grown ZnO nanostructures were characterized by X-ray diffraction(XRD),field-emission scanning electron microcopy(FESEM),energy-dispersive X-ray spectrometry(EDX),ultraviolet-visible(UV-Vis)and photoelectrochemical propriety.XRD spectra showed that both ZnO and ZnO:Co nanorods had a hexagonal wurtzite structure with a strong preferred orientation along the(002)plane.The surface morphology of films was studied by FESEM and showed that both the pure and Co-doped ZnO films had hexagonal shaped nanorods.In the steady state,the ZnO electrode gave a photocurrent density of about 1.5 mA/cm2.However,the Co-doped ZnO electrode showed a photocurrent density of about 6 mA/cm^2,which is 4-fold higher than that of the ZnO electrode.Based on the above synthesized Co-doped ZnO films,the photovoltaic performance of PSCs was studied.The Co-doped ZnO layers had a significant impact on the photovoltaic conversion efficiency(PCE)of the PSCs.The latter was attributed to an efficient charge separation and transport due to the better coverage of perovskite on the nanostructured Co-doped ZnO films.As a result,the measured PCE under standard solar conditions(A M 1.5G,100 mW/cm^2)reached 7%.SCAPS-1D simulation was also performed to analyze the effect of the co-doped ZnO thin film on the corresponding solar cell performances.展开更多
Thin films of Cu2 x S(x = 0, 1) were deposited on self-assembled, monolayer modified substrates in the copper–thiosulfate system with various concentrations of ethylene diamine tetraacetic acid(EDTA) at a low tem...Thin films of Cu2 x S(x = 0, 1) were deposited on self-assembled, monolayer modified substrates in the copper–thiosulfate system with various concentrations of ethylene diamine tetraacetic acid(EDTA) at a low temperature of 70 8C. The thin films were characterized by means of X-ray diffraction(XRD), X-ray photoelectron spectroscope(XPS), field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM). The optical and photoelectrochemical(PEC) properties of the Cu2 x S semiconductor films were investigated by ultraviolet–visible(UV–vis) absorption spectroscopy and a three-electrode system. It is found that EDTA plays a key role in the process of Cu2 x S nanocrystals formation and growth. The compositions of the Cu2 x S nanocrystals varied from Cu2S(chalcocide) to Cu S(covellite) through adjusting the concentration of EDTA, which is used as a complexing agent to yield high-quality Cu2 x S films. The growth mechanisms of Cu2 x S nanocrystals with different EDTA concentrations are proposed and discussed in detail.展开更多
The one-dimensional titanium oxide(TiO_2) nanotubes(TONT) can be rationally fabricated in the fluoridecontaining electrolyte by electrochemical anodization. The high-speed growth of TONT for elongated nanotubes is hig...The one-dimensional titanium oxide(TiO_2) nanotubes(TONT) can be rationally fabricated in the fluoridecontaining electrolyte by electrochemical anodization. The high-speed growth of TONT for elongated nanotubes is highly desirable because the undesirable chemical etching will induce ‘‘nanograss" on the top of nanotubes and restrain the continued elongation of nanotubes. Herein, the external fields were employed to accelerate the growth of TONTs and obtain the elongated TONT arrays. A growth rate up to 18 lm/h was achieved under the presence of reduced pressure(0.07 MPa) and UV light(365 nm) stimulation. The generation of longer nanotube arrays could be attributed to the applied fields, which facilitate timely gas pumping out and induce chemical equilibrium shift forward. The TONT films obtained under different parameters were subsequently employed as anodes for photoelectrochemical(PEC) water splitting. The photocurrent(at 0 V vs Ag/Ag Cl) of TONT electrode obtained under external fields represented a 50% enhancement compared with the photoanode produced by the conventional method.展开更多
文摘The formation of charge transfer complexes (CTC) between C-60 with metallophthalocyanine (MPc. M=Zn, Co) has been investigated in three mixed organic solvents. The MPc-C-60 CTC were characterized by using UV-Vis and fluorescence spectra. The formation equilibrium constants (K) of CTC and their stoichiometry were determined. The foundation of CTC leads to a remarkable enhancement of the photoelectrochemical property. The CTC will provide a potential opportunity to develop a new applicable photoelectric material.
基金the financial support from China Postdoctoral Science Foundation(2014M551023)
文摘In this work, an efficient photocatalytic material was prepared directly on Indium tin oxide (ITO) glass substrates by fabricating Cu2S and graphene oxide onto graphene for photoelectrochemical (PEC) water splitting. The double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide (RG/Cu2S/RG/GO) nanofilms were characterized, and an enhanced photoelectrochemical response in the visible region was discovered. The photocurrent density of the nanofilms for PEC water splitting was measured to be up to 1.98 mA/cm(2), which could be ascribed to the followings: (i) a higher efficiency of light-harvesting because of GO coupling with Cu2S that could broaden the absorbing solar spectrum and enhance the light utilization efficiency; (ii) a stepwise structure of band-edge levels in the Cu2S/GO electrode was constructed; (iii) double laminated electron accelerator (RG) was used in the Cu2S/GO materials to get better electron-injecting efficiency. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974276 and 11804274)the Natural Science Foundation of Shaanxi Province of China (Grant No. 2023-JC-YB-139)+1 种基金the Open Research Fund of State Key Laboratory of Transient Optics and Photonicsthe Chinese Academy of Sciences (Grant No. SKLST202211)。
文摘As a traditional n-type semiconductor, TiO_(2)has good UV absorption ability and stable physical and chemical properties. However, its wide band gap and low oxygen evolution reaction(OER) activity limit its application in the field of photoelectrochemical(PEC) water splitting. In this work, a type-Ⅱ TiO2/CuNi2S4heterojunction photoanode is successfully constructed, which expanded the light absorption range to visible and enhanced the OER activity. Firstly, TiO2nanotubes(NTs) thin films are prepared on Ti substrates by two-step anodization, and then the bi-functional electrocatalytic material CuNi2S4is grown on TiO2NTs in the shape of nanosheets(NSs) in situ by solvothermal method. As a bi-functional electrocatalytic material, CuNi2S4has good visible light absorption property as well as OER catalytic activity. Compared with TiO_(2), the IPCE value of TiO_(2)/CuNi_(2)S_(4)is 2.59% at 635 nm, and that of TiO2is a mere 0.002%.The separation efficiency and injection efficiency increase from 2.49% and 31.52% to 3.61% and 87.77%, respectively. At 1.23 V vs. RHE, the maximum photocurrent density is 0.26 m A/cm^(2), which is 2.6 times than that of TiO2(0.11 m A/cm^(2)),and can be maintained at 0.25 m A/cm^(2)for at least 2 h under light illumination. Moreover, a hydrogen production rate of 4.21 μmol·cm^(-2)·h^(-1)is achieved within 2 h. This work provides a new idea for the application of TiO_(2)in the field of PEC water splitting and the construction of efficient and stable photoelectronic devices.
基金supported by the Major State Basic Research Development Program of China (No.2006CB202605)the National Natural Science Foundation of China (No.50473055)
文摘The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.
基金supported by National MCF Energy R&D Program of China(2018YFE0306105)National Key R&D Program of China(2020YFA0406104,2020YFA0406101)+6 种基金Innovative Research Group Project of the National Natural Science Foundation of China(51821002)National Natural Science Foundation of China(51725204,21771132,51972216,52041202,51902217)Natural Science Foundation of Jiangsu Province(BK20190041)Key-Area Research and Development Program of GuangDong Province(2019B010933001)Collaborative Innovation Center of Suzhou Nano Science and Technologythe 111 ProjectSuzhou Key Laboratory of Functional Nano and Soft Materials。
文摘Carbon dots(CDs),as a unique zero-dimensional member of carbon materials,have attracted numerous attentions for their potential applications in optoelectronic,biological,and energy related fields.Recently,CDs as catalysts for energy conversion reactions under multi-physical conditions such as light and/or electricity have grown into a research frontier due to their advantages of high visible light utilization,fast migration of charge carriers,efficient surface redox reactions and good electrical conductivity.In this review,we summarize the fabrication methods of CDs and corresponding CD nanocomposites,including the strategies of surface modification and heteroatom doping.The properties of CDs that concerned to the photo-and electro-catalysis are highlighted and detailed corresponding applications are listed.More importantly,as new non-contact detection technologies,transient photo-induced voltage/current have been developed to detect and study the charge transfer kinetics,which can sensitively reflect the complex electron separation and transfer behavior in photo-/electro-catalysts.The development and application of the techniques are reviewed.Finally,we discuss and outline the major challenges and opportunities for future CD-based catalysts,and the needs and expectations for the development of novel characterization technologies.
基金supported by the National Natural Science Foundation of China(21377020)the Fundamental Research Funds for the Central Universities(DUT15QY17)
文摘Quantum-sized CdS-coated TiO2 nanotube array (Q-CdS-TiO2 NTA) was fabricated by the modified successive ionic layer absorption and reaction method. Scanning electron microscope and transmission electron microscope images showed the regular structure of TiO2 NTA, where quantum-sized CdS (diameter 〈10nm) deposited on both the inside and outside of TiO2 nanotube wall. Fabrication conditions including immersing cycles, calcination temperature and drying process were well optimized, and the Q-CdS-TiO2 NTA and its photoelectrochemical (PEC) properties were characterized by X-ray fluorescence spectrometer, UV-Vis diffuse reflectance spectra and photovoltage. Distinct increases in visible light absorption and photocurrent were observed as the immersing cycle was increased from 5 to 20 times. The additional drying process accelerated the CdS crystal growth rate, and thus, the fabrication time could be shortened accordingly. Calcination temperature influenced the PEC property of Q-CdS-TiO2 NTA deeply, and the optimized calcination temperature was found as 500 ℃. As the Q-CdS-TiO2 NTA was fabricated under such condition, the visible photocurrent density increased to 2.8 mA/cm and the photovoltage between 350 and 480 nm was enhanced by 2.33 times than that without calcination. This study is expected to optimize Q-CdS-TiO2 NTA fabrication conditions for the purpose of improving its PEC performance.
基金This work was supported by the Ministry of High Education and Scientific Research in Tunisia,the Spanish Ministry of Economy and Competitiveness.
文摘In this work,high quality uniform and dense nanostructured cobalt-doped zinc oxide(ZnO:Co)films were used as electron-transport layers in CH3NH3Pbl3-based planar heterojunction perovskite solar cells(PSCs)on a flexible conductive substrate.Highly photo catalytically active ZnO:Co films were prepared by a low cost hydrothermal process using the aqueous solution of zinc nitrate hexahydrate,hexamethylenete-tramine and cobalt(II)nitrate hexahydrate.ZnO:Co films were deposited on indium tin oxide(ITO)covered polyethylene terephthalate(PET)flexible substrates.The growth was controlled by maintaining the autoclave temperature at 150℃for 4 h.The CH3NH3Pbl3 layer was deposited on the ZnO:Co films by spin coating.Spiro-OMeTAD was employed as a hole-transporting material.The structural,morphology and optical properties of the grown ZnO nanostructures were characterized by X-ray diffraction(XRD),field-emission scanning electron microcopy(FESEM),energy-dispersive X-ray spectrometry(EDX),ultraviolet-visible(UV-Vis)and photoelectrochemical propriety.XRD spectra showed that both ZnO and ZnO:Co nanorods had a hexagonal wurtzite structure with a strong preferred orientation along the(002)plane.The surface morphology of films was studied by FESEM and showed that both the pure and Co-doped ZnO films had hexagonal shaped nanorods.In the steady state,the ZnO electrode gave a photocurrent density of about 1.5 mA/cm2.However,the Co-doped ZnO electrode showed a photocurrent density of about 6 mA/cm^2,which is 4-fold higher than that of the ZnO electrode.Based on the above synthesized Co-doped ZnO films,the photovoltaic performance of PSCs was studied.The Co-doped ZnO layers had a significant impact on the photovoltaic conversion efficiency(PCE)of the PSCs.The latter was attributed to an efficient charge separation and transport due to the better coverage of perovskite on the nanostructured Co-doped ZnO films.As a result,the measured PCE under standard solar conditions(A M 1.5G,100 mW/cm^2)reached 7%.SCAPS-1D simulation was also performed to analyze the effect of the co-doped ZnO thin film on the corresponding solar cell performances.
基金the Person with ability introduce and scientific research item of northwest university for nationalities(No.xbmuyjrc1201204)the Fundamental Research Funds for the Central Universities(No.31920140083)for providing the financial support
文摘Thin films of Cu2 x S(x = 0, 1) were deposited on self-assembled, monolayer modified substrates in the copper–thiosulfate system with various concentrations of ethylene diamine tetraacetic acid(EDTA) at a low temperature of 70 8C. The thin films were characterized by means of X-ray diffraction(XRD), X-ray photoelectron spectroscope(XPS), field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM). The optical and photoelectrochemical(PEC) properties of the Cu2 x S semiconductor films were investigated by ultraviolet–visible(UV–vis) absorption spectroscopy and a three-electrode system. It is found that EDTA plays a key role in the process of Cu2 x S nanocrystals formation and growth. The compositions of the Cu2 x S nanocrystals varied from Cu2S(chalcocide) to Cu S(covellite) through adjusting the concentration of EDTA, which is used as a complexing agent to yield high-quality Cu2 x S films. The growth mechanisms of Cu2 x S nanocrystals with different EDTA concentrations are proposed and discussed in detail.
基金supported by the National Natural Science Foundation of China(61622407,61474128,21503261 and 61504155)Science&Technology Commission of Shanghai Municipality(14JC1492900)+3 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(2013302)the CAS President’s International Fellowship for Visiting Scientists(2016TW1GA0001)the Youth Innovation Fund for Interdisciplinary Research of SARI(Y526453233)Development Fund for Information communication and integrated circuit technology public service platform(No.2016-14)supported by Zhangjiang Administrative Committee
文摘The one-dimensional titanium oxide(TiO_2) nanotubes(TONT) can be rationally fabricated in the fluoridecontaining electrolyte by electrochemical anodization. The high-speed growth of TONT for elongated nanotubes is highly desirable because the undesirable chemical etching will induce ‘‘nanograss" on the top of nanotubes and restrain the continued elongation of nanotubes. Herein, the external fields were employed to accelerate the growth of TONTs and obtain the elongated TONT arrays. A growth rate up to 18 lm/h was achieved under the presence of reduced pressure(0.07 MPa) and UV light(365 nm) stimulation. The generation of longer nanotube arrays could be attributed to the applied fields, which facilitate timely gas pumping out and induce chemical equilibrium shift forward. The TONT films obtained under different parameters were subsequently employed as anodes for photoelectrochemical(PEC) water splitting. The photocurrent(at 0 V vs Ag/Ag Cl) of TONT electrode obtained under external fields represented a 50% enhancement compared with the photoanode produced by the conventional method.