In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mod...In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.展开更多
In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the su...In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.展开更多
We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the ...We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-ind...The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.展开更多
A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behave...A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,e...The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,engineers,and clinical researchers from a variety of disciplines engaged in applying optical science,photonics,and imaging technologies to problems in biology and medicine.During the workshops,two plenary lectures and twenty invited presentations were presented.This special issue selects some papers from both Russian and Chinese sides,consisting of one review and seven original research articles.展开更多
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano ...As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.展开更多
The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides c...The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum...The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601196).
文摘In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.
基金supported by the National Natural Science Foundation of China(62250710162 and 12274406)the National Key Research and Development Program of China(2022YFA1405100).
文摘We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
文摘The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.
文摘A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
文摘The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,engineers,and clinical researchers from a variety of disciplines engaged in applying optical science,photonics,and imaging technologies to problems in biology and medicine.During the workshops,two plenary lectures and twenty invited presentations were presented.This special issue selects some papers from both Russian and Chinese sides,consisting of one review and seven original research articles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
文摘As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11975154,12375236,12135009,and 12275249)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)。
文摘The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金Project supported by the National Natural Science Foundation of China(Grant No.92165202)the Innovation Program for Quantum Science and Technology,China(Grant No.2021ZD0300701)the Strategic Priority Research Program(A)of Chinese Academy of Sciences(Grant No.XDA18040300).
文摘The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.