期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Enhancing photovoltaic power prediction using a CNN-LSTM-attention hybrid model with Bayesian hyperparameter optimization
1
作者 Ning Zhou Bowen Shang +2 位作者 Mingming Xu Lei Peng Yafei Zhang 《Global Energy Interconnection》 EI CSCD 2024年第5期667-681,共15页
Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively ad... Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data. 展开更多
关键词 photovoltaic power prediction CNN-LSTM-Attention Bayesian optimization
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
2
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation K-mean singular value decomposition algorithm(K-SVD) kernel extreme learning machine(KELM)
下载PDF
Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model
3
作者 Yujin Liu Zhenkai Zhang +3 位作者 Li Ma Yan Jia Weihua Yin Zhifeng Liu 《Energy Engineering》 EI 2024年第10期3019-3035,共17页
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ... Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction. 展开更多
关键词 photovoltaic power prediction LSTM network DBSCAN-SVM PSO deep learning
下载PDF
Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM
4
作者 Yuxuan Zhao Bo Wang +2 位作者 Shu Wang Wenjun Xu Gang Ma 《Energy Engineering》 EI 2024年第12期3711-3733,共23页
The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to glob... The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms. 展开更多
关键词 Major extreme weather photovoltaic power prediction weather clustering VMD-KELM network prediction model
下载PDF
Two-stage photovoltaic power forecasting method with an optimized transformer
5
作者 Yanhong Ma Feng Li +2 位作者 Hong Zhang Guoli Fu Min Yi 《Global Energy Interconnection》 EI CSCD 2024年第6期812-824,共13页
Accurate photovoltaic(PV)power forecasting ensures the stability and reliability of power systems.To address the complex characteristics of nonlinearity,volatility,and periodicity,a novel two-stage PV forecasting meth... Accurate photovoltaic(PV)power forecasting ensures the stability and reliability of power systems.To address the complex characteristics of nonlinearity,volatility,and periodicity,a novel two-stage PV forecasting method based on an optimized transformer architecture is proposed.In the first stage,an inverted transformer backbone was utilized to consider the multivariate correlation of the PV power series and capture its non-linearity and volatility.ProbSparse attention was introduced to reduce high-memory occupation and solve computational overload issues.In the second stage,a weighted series decomposition module was proposed to extract the periodicity of the PV power series,and the final forecasting results were obtained through additive reconstruction.Experiments on two public datasets showed that the proposed forecasting method has high accuracy,robustness,and computational efficiency.Its RMSE improved by 31.23%compared with that of a traditional transformer,and its MSE improved by 12.57%compared with that of a baseline model. 展开更多
关键词 photovoltaic power prediction Invert transformer backbone ProbSparse attention Weighted series decomposition
下载PDF
Multi-features fusion for short-term photovoltaic power prediction
6
作者 Ming Ma Xiaorun Tang +4 位作者 Qingquan Lv Jun Shen Baixue Zhu Jinqiang Wang Binbin Yong 《Intelligent and Converged Networks》 EI 2022年第4期311-324,共14页
In recent years,in order to achieve the goal of“carbon peaking and carbon neutralization”,many countries have focused on the development of clean energy,and the prediction of photovoltaic power generation has become... In recent years,in order to achieve the goal of“carbon peaking and carbon neutralization”,many countries have focused on the development of clean energy,and the prediction of photovoltaic power generation has become a hot research topic.However,many traditional methods only use meteorological factors such as temperature and irradiance as the features of photovoltaic power generation,and they rarely consider the multi-features fusion methods for power prediction.This paper first preprocesses abnormal data points and missing values in the data from 18 power stations in Northwest China,and then carries out correlation analysis to screen out 8 meteorological features as the most relevant to power generation.Next,the historical generating power and 8 meteorological features are fused in different ways to construct three types of experimental datasets.Finally,traditional time series prediction methods,such as Recurrent Neural Network(RNN),Convolution Neural Network(CNN)combined with eXtreme Gradient Boosting(XGBoost),are applied to study the impact of different feature fusion methods on power prediction.The results show that the prediction accuracy of Long Short-Term Memory(LSTM),stacked Long Short-Term Memory(stacked LSTM),Bi-directional LSTM(Bi-LSTM),Temporal Convolutional Network(TCN),and XGBoost algorithms can be greatly improved by the method of integrating historical generation power and meteorological features.Therefore,the feature fusion based photovoltaic power prediction method proposed in this paper is of great significance to the development of the photovoltaic power generation industry. 展开更多
关键词 meteorological factors multi-features fusion time series prediction photovoltaic power prediction
原文传递
Forecasting Model of Photovoltaic Power Based on KPCA-MCS-DCNN 被引量:1
7
作者 Huizhi Gou Yuncai Ning 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期803-822,共20页
Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy ... Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness. 展开更多
关键词 photovoltaic power prediction kernel principal component analysis modified cuckoo search algorithm deep convolutional neural networks
下载PDF
Digital Twin Empowered PV Power Prediction
8
作者 Xiaoyu Zhang Yushuai Li +3 位作者 Tianyi Li Yonghao Gui Qiuye Sun David Wenzhong Gao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第5期1472-1483,共12页
The accurate prediction of photovoltaic(PV)power generation is significant to ensure the economic and safe operation of power systems.To this end,the paper establishes a new digital twin(DT)empowered PV power predicti... The accurate prediction of photovoltaic(PV)power generation is significant to ensure the economic and safe operation of power systems.To this end,the paper establishes a new digital twin(DT)empowered PV power prediction framework that is capable of ensuring reliable data transmission and employing the DT to achieve high accuracy of power prediction.With this framework,considering potential data contamination in the collected PV data,a generative adversarial network is employed to restore the historical dataset,which offers a prerequisite to ensure accurate mapping from the physical space to the digital space.Further,a new DT-empowered PV power prediction method is proposed.Therein,we model a DT that encompasses a digital physical model for reflecting the physical operation mechanism and a neural network model(i.e.,a parallel network of convolution and bidirectional long short-term memory model)for capturing the hidden spatiotemporal features.The proposed method enables the use of the DT to take advantages of the digital physical model and the neural network model,resulting in enhanced prediction accuracy.Finally,a real dataset is conducted to assess the effectiveness of the proposed method. 展开更多
关键词 photovoltaic power prediction digital twin hybrid prediction data recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部