期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
PhysioNet信息资源解析及利用 被引量:6
1
作者 庞兴梅 《医学信息学杂志》 CAS 2010年第7期28-30,共3页
介绍基于Web的复杂生理信号和生物医学信号研究资源网站PhysioNet及其相互关联的组成部分:数据库PhysioBank,软件库PhysioToolkit和网络资源平台PhysioNet。探讨医学科研人员利用PhysioNet进行算法研究的过程,并对算法的性能进行整体评价。
关键词 physionet 信息 网络资源 软件开发
下载PDF
复杂生理信号研究资源-PhysioNet及其在抑制监护仪错误报警中的应用开发 被引量:1
2
作者 庞兴梅 李桥 《中国医学物理学杂志》 CSCD 2009年第4期1306-1308,1320,共4页
目的:研究复杂生理信号研究资源-PhysioNet的应用开发方法,研究抑制监护仪错误报警的算法。方法:首先详细介绍了PhysioNet以及它的三个相互关联的组成部分:数据库PhysioBank,软件库PhysioToolkit和网络资源平台PhysioNet;其次,研究了应... 目的:研究复杂生理信号研究资源-PhysioNet的应用开发方法,研究抑制监护仪错误报警的算法。方法:首先详细介绍了PhysioNet以及它的三个相互关联的组成部分:数据库PhysioBank,软件库PhysioToolkit和网络资源平台PhysioNet;其次,研究了应用PhysioNet进行算法开发研究的方法,然后研究了抑制监护仪错误报警的算法,利用PhysioToolkit软件包开发程序,取PhysioBank里的MIMIC II数据库中的心动过缓和心动过速报警数据进行分析,分类检测了监护仪产生的报警信息,对算法的性能进行了整体评价。结果:算法对真实报警的正确识别率为99.64%,对错误报警的抑制率为66.18%。结论:PhysioNet是分析人体复杂生理信号的重要的数据资源和研究开发平台,我们将其应用开发,对抑制监护仪错误报警算法的性能进行了整体评价,取得了较好的效果。 展开更多
关键词 physionet 错误报警
下载PDF
Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network
3
作者 Muhammad Aleem Raza Muhammad Anwar +4 位作者 Kashif Nisar Ag.Asri Ag.Ibrahim Usman Ahmed Raza Sadiq Ali Khan Fahad Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第12期3817-3834,共18页
With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardi... With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%. 展开更多
关键词 ARRHYTHMIA ECG signal deep learning convolutional neural network physionet MIT-BIH arrhythmia database
下载PDF
A hybrid wavelet and time plane based method for QT interval measurement in ECG signals 被引量:2
4
作者 Swanirbhar Majumder Saurabh Pal +2 位作者 Sidhartha Dhar Abhijit Sinha Abhijit Roy 《Journal of Biomedical Science and Engineering》 2009年第4期280-286,共7页
Here we present a method of QT interval meas-urement for Physionet's online QT Challenge ECG database using the combination of wavelet and time plane feature extraction mechanisms. For this we mainly combined two ... Here we present a method of QT interval meas-urement for Physionet's online QT Challenge ECG database using the combination of wavelet and time plane feature extraction mechanisms. For this we mainly combined two previous works one done using the Daubechies 6 wavelet and one time plane based with modifications in their algorithms and inclusion of two more wavelets (Daubechies 8 and Symlet 6). But found that out of these three wavelets Daube-chies 6 and 8 gives the best output and when averaged with the interval of time plane feature extraction method it gives least percentage of error with respect to the median reference QT interval as specified by Physionet. Our modified time plane feature extraction scheme along with the wavelet method together produces best re-sults for automated QT wave measurement as its regular verification is important for analyzing cardiac health. For the V2 chest lead particularly whose QT wave is of tremendous significance we have tested on 530 recordings of Physionet. This is because delay in cardiac repolarization causes ventricular tachyarrhythmias as well as Torsade de pointes (TdP). A feature of TdP is pronounced prolongation of the QT interval in the supraventricular beat preceding the ar-rhythmia. TdP can degenerate into ventricular fibrillation, leading to sudden death. 展开更多
关键词 ECG QT physionet TDP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部