With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous sys...With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous systems are expected to be one of the approaches to breaking the von Neumann bottleneck.Piezotronic neuromorphic devices modulate electrical transport characteristics by piezopotential and directly associate external mechanical motion with electrical output signals in an active manner,with the capability to sense/store/process information of external stimuli.In this review,we have presented the piezotronic neuromorphic devices(which are classified into strain-gated piezotronic transistors and piezoelectric nanogenerator-gated field effect transistors based on device structure)and discussed their operating mechanisms and related manufacture techniques.Secondly,we summarized the research progress of piezotronic neuromorphic devices in recent years and provided a detailed discussion on multifunctional applications,including bionic sensing,information storage,logic computing,and electrical/optical artificial synapses.Finally,in the context of future development,challenges,and perspectives,we have discussed how to modulate novel neuromorphic devices with piezotronic effects more effectively.It is believed that the piezotronic neuromorphic devices have great potential for the next generation of interactive sensation/memory/computation to facilitate the development of the Internet of Things,AI,biomedical engineering,etc.展开更多
High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is ...High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.展开更多
Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable...Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).展开更多
Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical sti...Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.展开更多
The piezotronics effect utilizes a piezopotential to modulate and control current in piezo-semiconductors.Ferroelectric materials,as a type of piezoelectric materials,possess piezoelectric coefficients that are signif...The piezotronics effect utilizes a piezopotential to modulate and control current in piezo-semiconductors.Ferroelectric materials,as a type of piezoelectric materials,possess piezoelectric coefficients that are significantly larger than those found in conventional piezoelectric materials.Here,we propose a strain modulated ferroelectric field-effect transistor(St-FeFET)utilizing external strain instead of gate voltage to achieve ferroelectric modulation,which eliminates the need for gate voltage.By applying a very small strain(0.01%),the St-FeFET can achieve a maximum on-off current ratio of 1250%and realizes a gauge factor(GF)of 1.19×10^(6),which is much higher than that of conventional strain sensors.This work proposes a new method for realizing highly sensitive strain sensors and presents innovative approaches to the operation methods of ferroelectric field-effect transistors as well as potential applications for coupling of strain sensors and various devices across different fields.展开更多
A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal-semiconductor-metal (M-S-M) structure. By means of the piezotronic effect, the signal level, sensitivity and s...A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal-semiconductor-metal (M-S-M) structure. By means of the piezotronic effect, the signal level, sensitivity and sensing resolution of the humidity sensor were significantly enhanced when applying an external strain. Since a higher Schottky barrier markedly reduces the signal level, while a lower Schottky barrier decreases the sensor sensitivity due to increased ohmic transport, a 0.22% compressive strain was found to optimize the performance of the humidity sensor, with the largest responsivity being 1,240%. The physical mechanism behind the observed mechanical-electrical behavior was carefully studied by using band structure diagrams. This work provides a promising way to significantly enhance the overall performance of a Schottky-contact structured micro/nanowire sensor.展开更多
ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (...ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.展开更多
GaN ultraviolet (UV) photodetectors (PDs) have attracted tremendous attention due to their chemical stability in harsh environments. Although Schottky- contacted GaN-based UV PDs have been implemented with better ...GaN ultraviolet (UV) photodetectors (PDs) have attracted tremendous attention due to their chemical stability in harsh environments. Although Schottky- contacted GaN-based UV PDs have been implemented with better performance than that of ohmic contacts, it remains unknown how the barrier height at local Schottky contacts controls the sensors' performance. In this work, the piezotronic effect was employed to tune the Schottky barrier height (SBH) at local contacts and hence enhance the performances of Schottky-contacted metal-semiconductor- metal (MSM) structured GaN nanobelt (NB)-based PDs. In general, the response level of the PDs was obviously enhanced by the piezotronic effect when applying a strain on devices. The responsivity of the PD was increased by 18%, and the sensitivity was enhanced by from 22% to 31%, when illuminated by a 325 nm laser with light intensity ranging from 12 to 2 W/cm2. Carefully studying the mechanism using band structure diagrams reveals that the observed enhancement of the PD performance resulted from the change in SBH caused by external strain as well as light intensity. Using piezotronic effects thus provides a practical way to enhance the performance of PDs made not only of GaN, but also other wurtzite and zinc blende family materials.展开更多
In this work, the piezotronic effect is investigated for the first time in external electric fields ranging from 0 V·cm-I to 2,000 V·cm-1 by using n-type ZnO nanowires supported by a flexible substrate. In t...In this work, the piezotronic effect is investigated for the first time in external electric fields ranging from 0 V·cm-I to 2,000 V·cm-1 by using n-type ZnO nanowires supported by a flexible substrate. In the presence of an external electric field, the Schottky barrier height (SBH) is lowered by the image force, allowing more free carriers to pass through the metal-semiconductor junction and enhancing the screening effect on positive piezoelectric polarization charges. As the strength of the external electric field increases, the piezotronic effect is significantly suppressed and the metal-semiconductor contact finally exhibits Ohmic behavior. The experimental results show that devices can be classified into three groups, corresponding to low, moderate, and high carrier densities of the nanowires used. This work not only helps us to explicate the basic physical mechanism of the piezotronic effect in a harsh environment in an electric field but also provides guidelines for future design and fabrication of piezotronic devices.展开更多
Third generation semiconductors for piezotronics and piezo-phototronics,such as Zn O and Ga N,have both piezoelectric and semiconducting properties.Piezotronic devices normally exhibit high strain sensitivity because ...Third generation semiconductors for piezotronics and piezo-phototronics,such as Zn O and Ga N,have both piezoelectric and semiconducting properties.Piezotronic devices normally exhibit high strain sensitivity because strain-induced piezoelectric charges control or tune the carrier transport at junctions,contacts and interfaces.The distribution width of piezoelectric charges in a junction is one of important parameters.Capacitance-voltage(C-V)characteristics can be used to estimate the distribution width of strain-induced piezoelectric charges.Piezotronic metal–insulator-semiconductor(MIS)has been modelled by analytical solutions and numerical simulations in this paper,which can serve as guidance for C-V measurements and experimental designs of piezotronic devices.展开更多
The fascinating two-dimensional(2D)materials are being potentially applied in various fields from science to engineering benefitting from the charming physical and chemical properties on optics,electronics,and magneti...The fascinating two-dimensional(2D)materials are being potentially applied in various fields from science to engineering benefitting from the charming physical and chemical properties on optics,electronics,and magnetism,compared with the bulk crystal,while piezotronics is a universal and pervasive phenomenon in the materials with broking center symmetry,promoting the new field and notable achievements of piezotronics in 2D materials with higher accuracy and sensitivity.For example,20 parts per billion of the detecting limitations in NO_(2)sensor,500μm of spatial strain resolution in flexible devices,and 0.363 eV output voltage in nanogenerators.In this review,three categories of 2D piezotronics materials are first introduced ranging from organic to inorganic data,among which six types of 2D inorganic materials are emphasized based on the geometrical arrangement of different atoms.Then,the microscopic mechanism of carrier transport and separation in 2D piezotronic materials is highlighted,accompanied with the presentation of four measured methods.Subsequently,the developed applications of 2D piezotronics are discussed comprehensively including different kinds of sensors,piezo-catalysis,nanogenerators and information storage.Ultimately,we suggest the challenges and provide the ideas for qualitative-quantitative research of microscopic mechanism and large-scale integrated applications of 2D piezotronics.展开更多
The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of...The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of the QD. A small mechanical force may induce a significant change on the emission spectrum. In the case of InN QDs, it is demonstrated that the unforced emission wavelength is more than doubled by a force of 1 μN. The strategy of using the piezotronic effect to tune the color of the emission leads to promising noncontact force- measurement applications in biological and medical sensors and force-sensitive displays. Several piezoelectric semiconductor materials have been investigated in terms of the tunability of the emission wavelength in the presence of an external applied force. It is found that CdS and CdSe demonstrate much higher tunability δλ/δF, which makes them suitable for micro/nano-newton force measurement applications.展开更多
Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as t...Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.展开更多
Performance modulation of ZnO optoelectronic devices in the presence of proper piezoelectric polarization charges has been widely reported, whereas relatively less work has been performed about the influence of photoe...Performance modulation of ZnO optoelectronic devices in the presence of proper piezoelectric polarization charges has been widely reported, whereas relatively less work has been performed about the influence of photoexcitation on piezotronics. In this stud~ we experimentally investigated the performance evolution of ZnO piezotronic strain sensor under various 365 nm UV irradiation densities. The device demonstrated a response ratio of -200 under no illumination and under -0.53% compressive strain, and the response time is approximately 0.3 s. However, tremendous performance degradation was observed with the increase in the illumination densi~, which is attributed to the W-modulated change in the free electron concentration and Schottky barrier height. It was observed that increased carrier density intensifies the screening effect and thus, the modulation ability of piezo-polarization charges weakens. Meanwhile, the deterioration of rectifying behavior at the interface under UV illumination also jeopardizes the device performance.展开更多
Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric se...Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric semiconductor materials,novel nanodevices have been demonstrated,from which a new field called piezotronics was formulated.The core of piezotronics is to study the mechanism of the piezoelectric effect on tuning the charge transport behavior across various junctions or interfaces,with potential applications in sensors,microelectromechanical systems,and force/pressure triggered electric devices.Here following the theoretical frame work of piezotronic effect,analytical solutions of piezoelectric heterojunction are presented to investigate the electrical transport behavior at a p-n junction.Numerical simulation is given for guiding future experimental measurements.展开更多
For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied ...For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.展开更多
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ...Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.展开更多
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren...It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.展开更多
We study the bending of a two-layer piezoelectric semiconductor plate(bimorph).The macroscopic theory of piezoelectric semiconductors is employed.A set of two-dimensional plate equations is derived from the three-dime...We study the bending of a two-layer piezoelectric semiconductor plate(bimorph).The macroscopic theory of piezoelectric semiconductors is employed.A set of two-dimensional plate equations is derived from the three-dimensional equations.The plate equations exhibit direct couplings among bending,electric polarization along the plate thickness,and mobile charges.In the case of pure bending,a combination of physical and geometric parameters is identified which characterizes the strength of the interaction between the mechanical load and the distribution of mobile charges.In the bending of a rectangular plate under a distributed transverse mechanical load,it is shown that mobile charge distributions and potential barriers/wells develop in the plate.When the mechanical load is local and self-balanced,the induced carrier distributions and potential barriers/wells are also localized near the loading area.The results are fundamentally useful for mechanically manipulating mobile charges in piezoelectric semiconductor devices.展开更多
The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers....The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers.One is stimulated by the action of the polarized electric field in the EW-front on charge carriers(EFC),and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers(IEC).Obviously,the latter is a man-made and tunable wave-carrier interaction.A careful study shows that IEC can play a leading role in remaking dynamic performance of the wave-front and an inter-medium role in transferring energy from biasing fields to EW-fronts.Hence,a method is proposed to reform the EW performance by biasing-fields:reforming the dispersivity of EW-fronts by promoting competition between IEC and EFC and inverting the dissipation by the IEC to transfer energy from biasing fields to EWfronts.The corresponding tuning laws on the phase-frequency characteristics of an EW show that the wave velocity can be regulated smaller than the pure EW velocity at a lowfrequency and larger than the pure piezoelectric wave velocity at a high-frequency.As for regulating the amplitude-frequency characteristics of the EW by the IEC,analyses show that EWs can obtain amplification only for those with relatively high vibration frequencies(small wave lengths).The studies will provide guidance for theoretical analysis of waves propagating in PSCs and practical application and design of piezotronic devices.展开更多
基金financially supported by the National Natural Science Foundation of China(52073031,22008151)the National Key Research and Development Program of China(2021YFB3200304)+2 种基金Beijing Nova Program(Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the‘Hundred Talents Program’of the Chinese Academy of Sciences。
文摘With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous systems are expected to be one of the approaches to breaking the von Neumann bottleneck.Piezotronic neuromorphic devices modulate electrical transport characteristics by piezopotential and directly associate external mechanical motion with electrical output signals in an active manner,with the capability to sense/store/process information of external stimuli.In this review,we have presented the piezotronic neuromorphic devices(which are classified into strain-gated piezotronic transistors and piezoelectric nanogenerator-gated field effect transistors based on device structure)and discussed their operating mechanisms and related manufacture techniques.Secondly,we summarized the research progress of piezotronic neuromorphic devices in recent years and provided a detailed discussion on multifunctional applications,including bionic sensing,information storage,logic computing,and electrical/optical artificial synapses.Finally,in the context of future development,challenges,and perspectives,we have discussed how to modulate novel neuromorphic devices with piezotronic effects more effectively.It is believed that the piezotronic neuromorphic devices have great potential for the next generation of interactive sensation/memory/computation to facilitate the development of the Internet of Things,AI,biomedical engineering,etc.
基金Key-Area Research and Development Program of Guangdong Province(Nos.2020B010172001,2020B010174004)GDAS’Project of Science and Technology Development(No.2018GDASCX-0112)+3 种基金Science and Technology Program of Guangzhou(No.2019050001)National Key Research and Development Program of China(No.2017YFB0404100)National Natural Science Foundation of China(Grant No.11804103)Guangdong Natural Science Foundation for Distinguished Young Scholars(Grant No.2018B030306048).
文摘High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.
文摘Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).
基金supported from the National Natural Science Foundation of China(No.62404125)the Hubei Provincial Natural Science Foundation of China(No.2024AFB359)+5 种基金the Yichang City Natural Science Foundation of China(No.A24-3-004)the China Three Gorges University(No.2023RCKJ0035)the Basic Research Programs of Taicang,2021(No.TC2021JC20)the China Postdoctoral Science Foundation(No.2022M722588)the Young Talent Fund of Xi’an Association for Science and Technology(No.959202313090)the Key Research and Development Projects of Shaanxi Province(No.2024GX-YBXM-029).
文摘Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.
基金supported by the National Natural Science Foundation of China(No.52192611)Beijing Municipal Natural Science Foundation(No.Z230024)the Fundamental Research Funds for the Central Universities.
文摘The piezotronics effect utilizes a piezopotential to modulate and control current in piezo-semiconductors.Ferroelectric materials,as a type of piezoelectric materials,possess piezoelectric coefficients that are significantly larger than those found in conventional piezoelectric materials.Here,we propose a strain modulated ferroelectric field-effect transistor(St-FeFET)utilizing external strain instead of gate voltage to achieve ferroelectric modulation,which eliminates the need for gate voltage.By applying a very small strain(0.01%),the St-FeFET can achieve a maximum on-off current ratio of 1250%and realizes a gauge factor(GF)of 1.19×10^(6),which is much higher than that of conventional strain sensors.This work proposes a new method for realizing highly sensitive strain sensors and presents innovative approaches to the operation methods of ferroelectric field-effect transistors as well as potential applications for coupling of strain sensors and various devices across different fields.
文摘A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal-semiconductor-metal (M-S-M) structure. By means of the piezotronic effect, the signal level, sensitivity and sensing resolution of the humidity sensor were significantly enhanced when applying an external strain. Since a higher Schottky barrier markedly reduces the signal level, while a lower Schottky barrier decreases the sensor sensitivity due to increased ohmic transport, a 0.22% compressive strain was found to optimize the performance of the humidity sensor, with the largest responsivity being 1,240%. The physical mechanism behind the observed mechanical-electrical behavior was carefully studied by using band structure diagrams. This work provides a promising way to significantly enhance the overall performance of a Schottky-contact structured micro/nanowire sensor.
基金This work was supported by the National Major Research Program of China (No. 2013CB932602), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), National Natural Science Foundation of China (NSFC) (Nos. 51232001, 51172022, 51372020, and 51002008), the Fundamental Research Funds for Central Universities, Program for New Century Excellent Talents in Universities, and the Program for Changjiang Scholars and Innovative Research Teams in Universities.
文摘ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.
基金Acknowledgements This research was supported by National Science Foundation (NSF), Multidisciplinary University Research Initiative (MURI) Airforce, Basic Energy Sciences (BES) Department of Energy (DOE) (No. DE- FG02-07ER46394) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M13).
文摘GaN ultraviolet (UV) photodetectors (PDs) have attracted tremendous attention due to their chemical stability in harsh environments. Although Schottky- contacted GaN-based UV PDs have been implemented with better performance than that of ohmic contacts, it remains unknown how the barrier height at local Schottky contacts controls the sensors' performance. In this work, the piezotronic effect was employed to tune the Schottky barrier height (SBH) at local contacts and hence enhance the performances of Schottky-contacted metal-semiconductor- metal (MSM) structured GaN nanobelt (NB)-based PDs. In general, the response level of the PDs was obviously enhanced by the piezotronic effect when applying a strain on devices. The responsivity of the PD was increased by 18%, and the sensitivity was enhanced by from 22% to 31%, when illuminated by a 325 nm laser with light intensity ranging from 12 to 2 W/cm2. Carefully studying the mechanism using band structure diagrams reveals that the observed enhancement of the PD performance resulted from the change in SBH caused by external strain as well as light intensity. Using piezotronic effects thus provides a practical way to enhance the performance of PDs made not only of GaN, but also other wurtzite and zinc blende family materials.
文摘In this work, the piezotronic effect is investigated for the first time in external electric fields ranging from 0 V·cm-I to 2,000 V·cm-1 by using n-type ZnO nanowires supported by a flexible substrate. In the presence of an external electric field, the Schottky barrier height (SBH) is lowered by the image force, allowing more free carriers to pass through the metal-semiconductor junction and enhancing the screening effect on positive piezoelectric polarization charges. As the strength of the external electric field increases, the piezotronic effect is significantly suppressed and the metal-semiconductor contact finally exhibits Ohmic behavior. The experimental results show that devices can be classified into three groups, corresponding to low, moderate, and high carrier densities of the nanowires used. This work not only helps us to explicate the basic physical mechanism of the piezotronic effect in a harsh environment in an electric field but also provides guidelines for future design and fabrication of piezotronic devices.
基金the support from Swansea University,Solar Photovoltaic Academic Research Consortium(SPARC)ⅡprojectUniversity of Electronic Science and Technology of China.
文摘Third generation semiconductors for piezotronics and piezo-phototronics,such as Zn O and Ga N,have both piezoelectric and semiconducting properties.Piezotronic devices normally exhibit high strain sensitivity because strain-induced piezoelectric charges control or tune the carrier transport at junctions,contacts and interfaces.The distribution width of piezoelectric charges in a junction is one of important parameters.Capacitance-voltage(C-V)characteristics can be used to estimate the distribution width of strain-induced piezoelectric charges.Piezotronic metal–insulator-semiconductor(MIS)has been modelled by analytical solutions and numerical simulations in this paper,which can serve as guidance for C-V measurements and experimental designs of piezotronic devices.
基金Fundamental Research Funds for the Central UniversitiesNational Key R&D Project from Minister of Science and Technology,China,Grant/Award Number:2016YFA0202703+3 种基金National Natural Science Foundation of China,Grant/Award Numbers:11704081,U20A20166,61675027,61805015,618040Natural Science Foundation of Beijing Municipality,Grant/Award Number:Z180011Natural Science Foundation of Guangxi Province,Grant/Award Numbers:2020GXNSFAA297182,2017GXNSFBA198229Shenzhen Science and Technology Program,Grant/Award Number:KQTD20170810105439418。
文摘The fascinating two-dimensional(2D)materials are being potentially applied in various fields from science to engineering benefitting from the charming physical and chemical properties on optics,electronics,and magnetism,compared with the bulk crystal,while piezotronics is a universal and pervasive phenomenon in the materials with broking center symmetry,promoting the new field and notable achievements of piezotronics in 2D materials with higher accuracy and sensitivity.For example,20 parts per billion of the detecting limitations in NO_(2)sensor,500μm of spatial strain resolution in flexible devices,and 0.363 eV output voltage in nanogenerators.In this review,three categories of 2D piezotronics materials are first introduced ranging from organic to inorganic data,among which six types of 2D inorganic materials are emphasized based on the geometrical arrangement of different atoms.Then,the microscopic mechanism of carrier transport and separation in 2D piezotronic materials is highlighted,accompanied with the presentation of four measured methods.Subsequently,the developed applications of 2D piezotronics are discussed comprehensively including different kinds of sensors,piezo-catalysis,nanogenerators and information storage.Ultimately,we suggest the challenges and provide the ideas for qualitative-quantitative research of microscopic mechanism and large-scale integrated applications of 2D piezotronics.
文摘The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of the QD. A small mechanical force may induce a significant change on the emission spectrum. In the case of InN QDs, it is demonstrated that the unforced emission wavelength is more than doubled by a force of 1 μN. The strategy of using the piezotronic effect to tune the color of the emission leads to promising noncontact force- measurement applications in biological and medical sensors and force-sensitive displays. Several piezoelectric semiconductor materials have been investigated in terms of the tunability of the emission wavelength in the presence of an external applied force. It is found that CdS and CdSe demonstrate much higher tunability δλ/δF, which makes them suitable for micro/nano-newton force measurement applications.
基金This work was supported by the "thousands talents" program for pioneer researcher and his innovation team, China, the National Natural Science Foundation of China (No. 51432005), and Beijing Municipal Commission of Science and Technology (Nos. Z131100006013005 and Z131100006013004).
文摘Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.
基金This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802 and 51232001), Beijing Municipal Science & Technology Commission, and the Fundamental Research Funds for Central Universities.
文摘Performance modulation of ZnO optoelectronic devices in the presence of proper piezoelectric polarization charges has been widely reported, whereas relatively less work has been performed about the influence of photoexcitation on piezotronics. In this stud~ we experimentally investigated the performance evolution of ZnO piezotronic strain sensor under various 365 nm UV irradiation densities. The device demonstrated a response ratio of -200 under no illumination and under -0.53% compressive strain, and the response time is approximately 0.3 s. However, tremendous performance degradation was observed with the increase in the illumination densi~, which is attributed to the W-modulated change in the free electron concentration and Schottky barrier height. It was observed that increased carrier density intensifies the screening effect and thus, the modulation ability of piezo-polarization charges weakens. Meanwhile, the deterioration of rectifying behavior at the interface under UV illumination also jeopardizes the device performance.
基金partly supported by the Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities(Grant No.Lzujbky-2013-35)
文摘Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric semiconductor materials,novel nanodevices have been demonstrated,from which a new field called piezotronics was formulated.The core of piezotronics is to study the mechanism of the piezoelectric effect on tuning the charge transport behavior across various junctions or interfaces,with potential applications in sensors,microelectromechanical systems,and force/pressure triggered electric devices.Here following the theoretical frame work of piezotronic effect,analytical solutions of piezoelectric heterojunction are presented to investigate the electrical transport behavior at a p-n junction.Numerical simulation is given for guiding future experimental measurements.
基金supported by the Natural Science Foundation of Gansu Province,China(Grant No.145RJZA226)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-35)Beijing Municipal Commission of Science and Technology(Grant Nos.Z131100006013005 and Z131100006013004)
文摘For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.
基金Project supported by the National Natural Science Foundation of China (Nos.12172326 and 11972319)the National Key Research and Development Program of China (No.2020YFA0711700)the Natural Science Foundation of Zhejiang Province of China (No.LR21A020002)。
文摘Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.
基金the National Natural Science Foundation of China(Nos.12232007,11972164,and 12102141)。
文摘It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.
基金Project supported by the National Natural Science Foundation of China(Nos.12072167 and 11972199)the Natural Science Foundation of Zhejiang Province of China(Nos.LZ22A020001 and LGG19A020001)。
文摘We study the bending of a two-layer piezoelectric semiconductor plate(bimorph).The macroscopic theory of piezoelectric semiconductors is employed.A set of two-dimensional plate equations is derived from the three-dimensional equations.The plate equations exhibit direct couplings among bending,electric polarization along the plate thickness,and mobile charges.In the case of pure bending,a combination of physical and geometric parameters is identified which characterizes the strength of the interaction between the mechanical load and the distribution of mobile charges.In the bending of a rectangular plate under a distributed transverse mechanical load,it is shown that mobile charge distributions and potential barriers/wells develop in the plate.When the mechanical load is local and self-balanced,the induced carrier distributions and potential barriers/wells are also localized near the loading area.The results are fundamentally useful for mechanically manipulating mobile charges in piezoelectric semiconductor devices.
基金Project supported by the National Natural Science Foundation of China(Nos.12232007,12102141,U21A20430,and 11972164)the Chinese Postdoctoral Science Foundation(No.2022M711252)。
文摘The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers.One is stimulated by the action of the polarized electric field in the EW-front on charge carriers(EFC),and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers(IEC).Obviously,the latter is a man-made and tunable wave-carrier interaction.A careful study shows that IEC can play a leading role in remaking dynamic performance of the wave-front and an inter-medium role in transferring energy from biasing fields to EW-fronts.Hence,a method is proposed to reform the EW performance by biasing-fields:reforming the dispersivity of EW-fronts by promoting competition between IEC and EFC and inverting the dissipation by the IEC to transfer energy from biasing fields to EWfronts.The corresponding tuning laws on the phase-frequency characteristics of an EW show that the wave velocity can be regulated smaller than the pure EW velocity at a lowfrequency and larger than the pure piezoelectric wave velocity at a high-frequency.As for regulating the amplitude-frequency characteristics of the EW by the IEC,analyses show that EWs can obtain amplification only for those with relatively high vibration frequencies(small wave lengths).The studies will provide guidance for theoretical analysis of waves propagating in PSCs and practical application and design of piezotronic devices.