Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me...Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.展开更多
Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a met...Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.展开更多
Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ...Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ensure the quality of service(QoS)requirements of weak users at the same time,so that the sum rates of system can be improved.Combining with the technical advantage of pilot grouping,a low complexity pilot allocation scheme based on matching algorithm is proposed,which divides the users in the target cell into weak user group and strong user group,and adopts the minimum-maximum matching method to allocate pilots in weak user group.Through the introduction of Hungarian algorithm,a pilot allocation method is designed to ensure the fairness of the strong users.The simulation results show that,compared with the smart pilot allocation scheme,the pilot allocation scheme based on Hungarian algorithm,the pilot allocation scheme based on user grouping and the random pilot allocation scheme,the system performance of the proposed scheme has been effectively improved.展开更多
Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.How...Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.However,due to the massive connectivity of mobile devices,the pilot contamination problem will severely degrade the communication quality and spectrum efficiency of the massive MIMO system.We propose a deep Monte Carlo Tree Search(MCTS)-based intelligent Pilot-power Allocation Scheme(iPAS)to address this issue.The core of iPAS is a multi-task deep reinforcement learning algorithm that can automatically learn the radio environment and make decisions on the pilot sequence and power allocation to maximize the spectrum efficiency with self-play training.To accelerate the searching convergence,we introduce a Deep Neural Network(DNN)to predict the pilot sequence and power allocation actions.The DNN is trained in a self-supervised learning manner,where the training data is generated from the searching process of the MCTS algorithm.Numerical results show that our proposed iPAS achieves a better Cumulative Distribution Function(CDF)of the ergodic spectral efficiency compared with the previous suboptimal algorithms.展开更多
How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to t...How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.展开更多
文摘Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.
基金supported by the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19CF002).
文摘Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.
基金the National Natural Science Foundation of China(No.62001001).
文摘Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ensure the quality of service(QoS)requirements of weak users at the same time,so that the sum rates of system can be improved.Combining with the technical advantage of pilot grouping,a low complexity pilot allocation scheme based on matching algorithm is proposed,which divides the users in the target cell into weak user group and strong user group,and adopts the minimum-maximum matching method to allocate pilots in weak user group.Through the introduction of Hungarian algorithm,a pilot allocation method is designed to ensure the fairness of the strong users.The simulation results show that,compared with the smart pilot allocation scheme,the pilot allocation scheme based on Hungarian algorithm,the pilot allocation scheme based on user grouping and the random pilot allocation scheme,the system performance of the proposed scheme has been effectively improved.
文摘Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.However,due to the massive connectivity of mobile devices,the pilot contamination problem will severely degrade the communication quality and spectrum efficiency of the massive MIMO system.We propose a deep Monte Carlo Tree Search(MCTS)-based intelligent Pilot-power Allocation Scheme(iPAS)to address this issue.The core of iPAS is a multi-task deep reinforcement learning algorithm that can automatically learn the radio environment and make decisions on the pilot sequence and power allocation to maximize the spectrum efficiency with self-play training.To accelerate the searching convergence,we introduce a Deep Neural Network(DNN)to predict the pilot sequence and power allocation actions.The DNN is trained in a self-supervised learning manner,where the training data is generated from the searching process of the MCTS algorithm.Numerical results show that our proposed iPAS achieves a better Cumulative Distribution Function(CDF)of the ergodic spectral efficiency compared with the previous suboptimal algorithms.
基金supported by the National Natural Science Foundation of China(61671176 61671173)the Fundamental Research Funds for the Center Universities(HIT.MKSTISP.2016 13)
文摘How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.