Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due t...Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.展开更多
Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but ...Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but the precise consequences of floral larceny on plant reproductive success remain contentious.We conducted a comprehensive meta-analysis of 153 studies across 120 plant species,using 14 moderators to assess the effects of floral larceny on plant reproductive success and examine the key moderators.We found that floral larceny negatively impacts flower traits,pollinator visitation,pollen deposition,and fruit set,while having a neutral effect on critical female fitness indicators,such as seed set and seed quality,as well as on male fitness.By altering pollinator behavior,floral larceny may reduce geitonogamy,potentially enhancing genetic diversity.Additionally,factors such as pollinator type,plant mating system,and pollen limitation were identified as key moderators of these effects.Our analysis reveals an ultimately neutral effect of floral larceny on plant reproductive success,with potential benefits in certain contexts.These findings suggest that floral larceny plays a complex and multifaceted role within plant-pollinator interactions,facilitating the evolutionary stability and coexistence of floral larcenists and host plants.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
Unlike most plants, members of the genus Solanum produce cholesterol and use this as a precursor for steroidal glycoalkaloids. The production of the compounds begins as a branch from brassinosteroid biosynthesis, whic...Unlike most plants, members of the genus Solanum produce cholesterol and use this as a precursor for steroidal glycoalkaloids. The production of the compounds begins as a branch from brassinosteroid biosynthesis, which produces cholesterol that is further modified to produce steroidal glycoalkaloids. During the cholesterol biosynthesis pathway, genetic engineering could alter the formation of cholesterol from provitamin D3(7-dehydrocholesterol) and produce vitamin D3. Cholesterol is a precursor for many steroidal glycoalkaloids, including a-tomatine and esculeoside A. Alpha-tomatine is consumed by mammals and it can reduce cholesterol content and improve LDL:HDL ratio. When there is a high a-tomatine content, the fruit will have a bitter flavor, which together with other steroidal glycoalkaloids serving as protective and defensive compounds for tomato against insect, fungal, and bacterial pests. These compounds also affect the rhizosphere bacteria by recruiting beneficial bacteria. One of the steroidal glycoalkaloids, esculeoside A increases while fruit ripening. This review focuses on recent studies that uncovered key reactions of the production of cholesterol and steroidal glycoalkaloids in tomato connecting to human health, fruit flavor, and plant defense and the potential application for tomato crop improvement.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in...Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods.展开更多
Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing ...Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing countries,and from 2008 to 2018,droughts accounted for over 34%of crop and livestock yield losses,totaling about USD 37 billion.To support the growing human population,agricultural output must increase substantially,necessitating a 60%–100%rise in crop productivity to meet the escalating demand.To address environmental challenges,organic,inorganic,and microbial biostimulants are increasingly employed to enhance plant resilience through various morphological,physiological,and biochemical modifications.Plant biostimulants enhance plant resilience under abiotic stress through mechanisms such as abscisic acid signaling modulation,which regulates stomatal closure to reduce water loss during drought and heat stress.Additionally,they aid in scavenging reactive oxygen species and stabilizing ion channels,mitigating oxidative damage,and maintaining ionic balance under stress conditions such as salinity.This review summarizes recent advancements in applying these biostimulants,focusing on their roles in triggering morphological,physiological,biochemical,and molecular changes that collectively enhance plant resilience under stress conditions.It also includes a bibliometric analysis of all articles published on biostimulants from 2019 to 2024 and explores future research directions.Emphasis was placed on optimizing biostimulant formulations and understanding their synergistic effects to maximize their efficacy under various stress conditions.By integrating biostimulants into agricultural practices,we can adopt a sustainable strategy to safeguard crop productivity in the face of climate change and environmental stressors.展开更多
Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of polluta...Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of pollutants in the energy sector.When coal is burned to produce electricity,nitrogen oxides(NO_(x))are released into the air,one of the main pollutants that threaten human health and lead to a large number of premature deaths.The key to effective air quality management is the strict compliance of all plants with emission standards.However,not all Texas coal plants have the environmental equipment to lower pollutant emissions.Nitrogen dioxide(NO2)observations from the TROPOspheric Monitoring Instrument(TROPOMI)were used to evaluate the emissions for Texas power plants.Data from both the Emissions and Generation Resource Integrated Database(EGRID)and the Emissions Database for Global Atmospheric Research(EDGAR)were used to examine emissions.It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year,with the Martin Lake,Limestone and Fayette Power Project stations being the top emitters.WA Parish and Martin Lake stations have the strongest NOx fluxes,with both exhibiting significant seasonal variability.Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation(r=0.956)and a low root mean square error(0.766).A more reasonable control policy would lead to much reduced NOx emissions.展开更多
Evergreen broad-leaved forests(EBLFs)are widely distributed in East Asia and play a vital role in ecosystem stability.The occurrence of these forests in East Asia has been a subject of debate across various discipline...Evergreen broad-leaved forests(EBLFs)are widely distributed in East Asia and play a vital role in ecosystem stability.The occurrence of these forests in East Asia has been a subject of debate across various disciplines.In this study,we explored the occurrence of East Asian EBLFs from a paleobotanical perspective.By collecting plant fossils from four regions in East Asia,we have established the evolutionary history of EBLFs.Through floral similarity analysis and paleoclimatic reconstruction,we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia.The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene,followed by southwestern China during the late Eoceneeearly Oligocene.Subsequently,EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene.Paleoclimate simulation results suggest that the precipitation of wettest quarter(PWetQ,mm)exceeding 600 mm is crucial for the occurrence of EBLFs.Furthermore,the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon.This study provides new insights into the occurrence of EBLFs in East Asia.展开更多
Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation...Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation of plants are still unclear in different arid areas.This study analyzed the effects of three different BSCs treatments(without crust(WC),intact crust(IC),and broken crust(BC))on the growth,inorganic nutrient absorption,and organic solute synthesis of three typical desert plants(Grubovia dasyphylla(Fisch.&C.A.Mey.)Freitag&G.Kadereit,Nitraria tangutorum Bobrov,and Caragana koraiensis Kom.)in the Minqin desert-oasis ecotone of Northwest China.Results showed that the effects of three BSCs treatments on seed emergence and survival of three plants varied with seed types.The IC treatment significantly hindered the emergence and survival of seeds,while the BC treatment was more conducive to seed emergence and survival of plants.BSCs significantly promoted the growth of three plants,but their effects on plant growth varied at different stages of the growth.Briefly,the growth of G.dasyphylla was affected by BSCs in early stage,but the effects on the growth of G.dasyphylla significantly weakened in the middle and late stages.However,the growth of N.tangutorum and C.koraiensis only showed differences at the middle and late stages,with a significant enhancement in growth.Analysis of variance showed that BSCs,plant species,growth period,and their interactions had significant effects on the biomass and root:shoot ratio of three plants.BSC significantly affected the nutrients absorption and organic solute synthesis in plants.Specifically,BSCs significantly promoted nitrogen(N)absorption in plants and increased plant adaptability in N poor desert ecosystems,but had no significant effects on phosphorus(P)absorption.The effects of BSCs on inorganic nutrient absorption and organic solute synthesis in plants varied significantly among different plant species.The results suggest that BSCs have significant effects on the growth and nutrient accumulation of desert plants,which will provide theoretical basis for exploring the effects of BSCs on desert plant diversity,biodiversity conservation,and ecosystem management measures in arid and semi-arid areas.展开更多
The exopolysaccharide matrix of diazotrophic cyanobacteria was used to integrate phosphorus(P)and potassium(K)solubilizing bacteria,enhancing the survival of plant growth-promoting rhizobacteria,and ultimately the sur...The exopolysaccharide matrix of diazotrophic cyanobacteria was used to integrate phosphorus(P)and potassium(K)solubilizing bacteria,enhancing the survival of plant growth-promoting rhizobacteria,and ultimately the survival of bacteria in the rhizosphere for better plant growth.A new biofilm-based formulation comprising the diazotrophic cyanobacteria Anabaena AMP2,P-solubilizing Bacillus megaterium var.phosphaticum PB1,and K-solubilizing Rhizobium pusense KRBKKM1 was tested for efficacy in rice.The growth medium with half-strength BG-11 medium supplemented with 3%glucose showed best for biofilm formation under in vitro conditions.Analysis of the methanolic extract of the cyanobacterial-bacterial biofilm(CBB)showed the activity of antioxidants,such as 2-methoxy phenol and pentadecane,which are proven to improve plant-microbe interactions and plant growth,respectively.Treatment of rice seeds with CBB extract at 100 mL/kg or 200 mL/kg showed significant enhancement in germination rate and seedling length.Therefore,a pot culture experiment with the CBB formulations was carried out,and different growth and yield parameters were recorded.Principal component analysis showed that plant growth,yield,soil dehydrogenase activity,and soil chlorophyll content were positively correlated with rice plants amended with vermiculite-based CBB at 2 kg/hm^(2) followed by a spray with aqueous CBB formulation at 5 mL/L at 15 and 30 d after rice transplanting grown with a 25%reduced level of nitrogen/phosphorus/potassium chemical fertilizers than the recommended dose.Further,Pearson correlation analysis showed that yield was positively correlated with soil dehydrogenase(r=0.92**)and soil chlorophyll content(r=0.96**).We concluded that CBB could be used as a novel biofilm-based bio-inoculant to increase rice productivity and crop fitness as a component in integrated nutrient management and sustainable organic farming strategies with reduced chemical fertilizers.展开更多
Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecos...Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.展开更多
The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules...The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules.Various molecular processes regulate the interactions between plants and herbivorous insects.Here,we discuss the molecular patterns of plant perception of herbivorous insect feeding through activation of early signaling components,crosstalk of plant defense network composed of multiple plant hormones,and various adaptive changes in insect responses to plant defenses.Both plant defenses and insect counter-defenses are molecular adaptation processes to each other.Molecular models of plant-herbivorous insect interactions can more intuitively help us to understand the co-evolutionary arms race between plants and herbivorous insects.These results will provide detailed evidence to elucidate and enrich the interaction network of plant-herbivorous insects.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host...Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.展开更多
Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular m...Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular mechanisms controlling inflorescence architecture are poorly understood,restricting the progress of breeding varieties with ideal plant architecture in oilseed rape.In this study,we have identified and characterized a rapeseed inflorescence development mutant,reduced inflorescence length(ril),which exhibits determinate and shortened inflorescences,reduced plant height,compact branches,and increased silique density.Through BSA-seq and map-based cloning,we find that RIL encodes a cyclic nucleotide-gated channel 20(BnaA01.CNGC20).A substitution of proline at the 304th position to leucine(P304L)was identified in the conserved transmembrane domain of BnaA01.CNGC20.This P304L substitution neither affects the subcellular localization and self-assembly of BnaA01.CNGC20,nor disrupts the interactions with BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1(BAK1),which interacts with CNGC20 and phosphorylates it to regulate Ca^(2+)channel stability.However,the P304L substitution increases channel activity and Ca^(2+)influx,which in turn induces immune responses such as cell death,H2O2 accumulation,upregulation of pathogenesis-related genes,and pattern-triggered immunity.The enhanced immunity improves the resistance to Leptosphaeria biglobosa and Sclerotinia sclerotiorum.Transcriptome analysis further revealed that CNGC20 plays dual roles in regulating plant growth and immunity via the brassinosteroid and auxin signaling pathways.The findings in this study provide deeper insights into the intricate relationship between cytosolic Ca^(2+)level and plant development and immunity,as well as the trade-off between immunity and the performance of yield-related traits in the heterozygous plants(+/ril),which may serve as a guide for balancing yield and disease resistance in oilseed rape breeding.展开更多
With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belon...With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
基金This work was supported by the National Key Research and Development Program of China(2021YFE0107100)Guangxi Key Research and Development Program(GuikeAB22035004)Guangxi Science and Technology Base and Talent Special Project(Guike AD20297090).
文摘Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.
基金support by the National Natural Science Foundation of China(32170241,32160054,and 32470241)supported by the Chinese Academy of Science's PIFI Fellowship Initiative(2024PVC0046).
文摘Plants and their interaction partners offer unparalleled views of evolutionary ecology.Nectar larceny,entailing nectar extraction without pollinating,is thought to be an example of a harmful,antagonistic behavior,but the precise consequences of floral larceny on plant reproductive success remain contentious.We conducted a comprehensive meta-analysis of 153 studies across 120 plant species,using 14 moderators to assess the effects of floral larceny on plant reproductive success and examine the key moderators.We found that floral larceny negatively impacts flower traits,pollinator visitation,pollen deposition,and fruit set,while having a neutral effect on critical female fitness indicators,such as seed set and seed quality,as well as on male fitness.By altering pollinator behavior,floral larceny may reduce geitonogamy,potentially enhancing genetic diversity.Additionally,factors such as pollinator type,plant mating system,and pollen limitation were identified as key moderators of these effects.Our analysis reveals an ultimately neutral effect of floral larceny on plant reproductive success,with potential benefits in certain contexts.These findings suggest that floral larceny plays a complex and multifaceted role within plant-pollinator interactions,facilitating the evolutionary stability and coexistence of floral larcenists and host plants.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘Unlike most plants, members of the genus Solanum produce cholesterol and use this as a precursor for steroidal glycoalkaloids. The production of the compounds begins as a branch from brassinosteroid biosynthesis, which produces cholesterol that is further modified to produce steroidal glycoalkaloids. During the cholesterol biosynthesis pathway, genetic engineering could alter the formation of cholesterol from provitamin D3(7-dehydrocholesterol) and produce vitamin D3. Cholesterol is a precursor for many steroidal glycoalkaloids, including a-tomatine and esculeoside A. Alpha-tomatine is consumed by mammals and it can reduce cholesterol content and improve LDL:HDL ratio. When there is a high a-tomatine content, the fruit will have a bitter flavor, which together with other steroidal glycoalkaloids serving as protective and defensive compounds for tomato against insect, fungal, and bacterial pests. These compounds also affect the rhizosphere bacteria by recruiting beneficial bacteria. One of the steroidal glycoalkaloids, esculeoside A increases while fruit ripening. This review focuses on recent studies that uncovered key reactions of the production of cholesterol and steroidal glycoalkaloids in tomato connecting to human health, fruit flavor, and plant defense and the potential application for tomato crop improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.
基金funded by the United Arab Emirates UniversityResearch Officegrant number 12F041 to KM。
文摘Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods.
文摘Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing countries,and from 2008 to 2018,droughts accounted for over 34%of crop and livestock yield losses,totaling about USD 37 billion.To support the growing human population,agricultural output must increase substantially,necessitating a 60%–100%rise in crop productivity to meet the escalating demand.To address environmental challenges,organic,inorganic,and microbial biostimulants are increasingly employed to enhance plant resilience through various morphological,physiological,and biochemical modifications.Plant biostimulants enhance plant resilience under abiotic stress through mechanisms such as abscisic acid signaling modulation,which regulates stomatal closure to reduce water loss during drought and heat stress.Additionally,they aid in scavenging reactive oxygen species and stabilizing ion channels,mitigating oxidative damage,and maintaining ionic balance under stress conditions such as salinity.This review summarizes recent advancements in applying these biostimulants,focusing on their roles in triggering morphological,physiological,biochemical,and molecular changes that collectively enhance plant resilience under stress conditions.It also includes a bibliometric analysis of all articles published on biostimulants from 2019 to 2024 and explores future research directions.Emphasis was placed on optimizing biostimulant formulations and understanding their synergistic effects to maximize their efficacy under various stress conditions.By integrating biostimulants into agricultural practices,we can adopt a sustainable strategy to safeguard crop productivity in the face of climate change and environmental stressors.
基金This work was supported by the Basic Research Top Talent Plan of Lanzhou Jiaotong University(2022JC05).
文摘Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of pollutants in the energy sector.When coal is burned to produce electricity,nitrogen oxides(NO_(x))are released into the air,one of the main pollutants that threaten human health and lead to a large number of premature deaths.The key to effective air quality management is the strict compliance of all plants with emission standards.However,not all Texas coal plants have the environmental equipment to lower pollutant emissions.Nitrogen dioxide(NO2)observations from the TROPOspheric Monitoring Instrument(TROPOMI)were used to evaluate the emissions for Texas power plants.Data from both the Emissions and Generation Resource Integrated Database(EGRID)and the Emissions Database for Global Atmospheric Research(EDGAR)were used to examine emissions.It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year,with the Martin Lake,Limestone and Fayette Power Project stations being the top emitters.WA Parish and Martin Lake stations have the strongest NOx fluxes,with both exhibiting significant seasonal variability.Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation(r=0.956)and a low root mean square error(0.766).A more reasonable control policy would lead to much reduced NOx emissions.
基金supported by National Key R&D Program of China(No.2022YFF0800800)National Science Fund for Distinguished Young Scholars(No.32225005)+3 种基金National Natural Science Foundation of China(NSFC)(Nos.42072024,42320104005,42372033)the Young and Middle-aged Academic and Technical Leaders of Yunnan(No.202305AC160051)Basic Research Project of Yunnan Province(No.202401AT070222)the 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences(Nos.XTBG-1450101,E3ZKFF7B).
文摘Evergreen broad-leaved forests(EBLFs)are widely distributed in East Asia and play a vital role in ecosystem stability.The occurrence of these forests in East Asia has been a subject of debate across various disciplines.In this study,we explored the occurrence of East Asian EBLFs from a paleobotanical perspective.By collecting plant fossils from four regions in East Asia,we have established the evolutionary history of EBLFs.Through floral similarity analysis and paleoclimatic reconstruction,we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia.The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene,followed by southwestern China during the late Eoceneeearly Oligocene.Subsequently,EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene.Paleoclimate simulation results suggest that the precipitation of wettest quarter(PWetQ,mm)exceeding 600 mm is crucial for the occurrence of EBLFs.Furthermore,the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon.This study provides new insights into the occurrence of EBLFs in East Asia.
基金supported by the Natural Science Foundation of Gansu Province,China(24JRRA733,23JRRA589)the National Natural Science Foundation of China(42377470,42207539)the Light of Western Light Program of Talent Cultivation of Chinese Academy of Sciences(22JR9KA028).
文摘Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation of plants are still unclear in different arid areas.This study analyzed the effects of three different BSCs treatments(without crust(WC),intact crust(IC),and broken crust(BC))on the growth,inorganic nutrient absorption,and organic solute synthesis of three typical desert plants(Grubovia dasyphylla(Fisch.&C.A.Mey.)Freitag&G.Kadereit,Nitraria tangutorum Bobrov,and Caragana koraiensis Kom.)in the Minqin desert-oasis ecotone of Northwest China.Results showed that the effects of three BSCs treatments on seed emergence and survival of three plants varied with seed types.The IC treatment significantly hindered the emergence and survival of seeds,while the BC treatment was more conducive to seed emergence and survival of plants.BSCs significantly promoted the growth of three plants,but their effects on plant growth varied at different stages of the growth.Briefly,the growth of G.dasyphylla was affected by BSCs in early stage,but the effects on the growth of G.dasyphylla significantly weakened in the middle and late stages.However,the growth of N.tangutorum and C.koraiensis only showed differences at the middle and late stages,with a significant enhancement in growth.Analysis of variance showed that BSCs,plant species,growth period,and their interactions had significant effects on the biomass and root:shoot ratio of three plants.BSC significantly affected the nutrients absorption and organic solute synthesis in plants.Specifically,BSCs significantly promoted nitrogen(N)absorption in plants and increased plant adaptability in N poor desert ecosystems,but had no significant effects on phosphorus(P)absorption.The effects of BSCs on inorganic nutrient absorption and organic solute synthesis in plants varied significantly among different plant species.The results suggest that BSCs have significant effects on the growth and nutrient accumulation of desert plants,which will provide theoretical basis for exploring the effects of BSCs on desert plant diversity,biodiversity conservation,and ecosystem management measures in arid and semi-arid areas.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia(Grant No.RSP2025R358)Tamil Nadu Agricultural University,Coimbatore,India(Grant No.NRM-MDU-AGM-14-006).
文摘The exopolysaccharide matrix of diazotrophic cyanobacteria was used to integrate phosphorus(P)and potassium(K)solubilizing bacteria,enhancing the survival of plant growth-promoting rhizobacteria,and ultimately the survival of bacteria in the rhizosphere for better plant growth.A new biofilm-based formulation comprising the diazotrophic cyanobacteria Anabaena AMP2,P-solubilizing Bacillus megaterium var.phosphaticum PB1,and K-solubilizing Rhizobium pusense KRBKKM1 was tested for efficacy in rice.The growth medium with half-strength BG-11 medium supplemented with 3%glucose showed best for biofilm formation under in vitro conditions.Analysis of the methanolic extract of the cyanobacterial-bacterial biofilm(CBB)showed the activity of antioxidants,such as 2-methoxy phenol and pentadecane,which are proven to improve plant-microbe interactions and plant growth,respectively.Treatment of rice seeds with CBB extract at 100 mL/kg or 200 mL/kg showed significant enhancement in germination rate and seedling length.Therefore,a pot culture experiment with the CBB formulations was carried out,and different growth and yield parameters were recorded.Principal component analysis showed that plant growth,yield,soil dehydrogenase activity,and soil chlorophyll content were positively correlated with rice plants amended with vermiculite-based CBB at 2 kg/hm^(2) followed by a spray with aqueous CBB formulation at 5 mL/L at 15 and 30 d after rice transplanting grown with a 25%reduced level of nitrogen/phosphorus/potassium chemical fertilizers than the recommended dose.Further,Pearson correlation analysis showed that yield was positively correlated with soil dehydrogenase(r=0.92**)and soil chlorophyll content(r=0.96**).We concluded that CBB could be used as a novel biofilm-based bio-inoculant to increase rice productivity and crop fitness as a component in integrated nutrient management and sustainable organic farming strategies with reduced chemical fertilizers.
文摘Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.
基金the National Key R&D Program of China(2021YFD1400200)the National Natural Science Foundation of China(32272588,31972299).
文摘The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules.Various molecular processes regulate the interactions between plants and herbivorous insects.Here,we discuss the molecular patterns of plant perception of herbivorous insect feeding through activation of early signaling components,crosstalk of plant defense network composed of multiple plant hormones,and various adaptive changes in insect responses to plant defenses.Both plant defenses and insect counter-defenses are molecular adaptation processes to each other.Molecular models of plant-herbivorous insect interactions can more intuitively help us to understand the co-evolutionary arms race between plants and herbivorous insects.These results will provide detailed evidence to elucidate and enrich the interaction network of plant-herbivorous insects.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A351)the Joint Fund of National Natural Science Foundation of China(U2003214)+1 种基金the Key Project of Xinjiang Uygur Autonomous Region Natural Science Foundation(2022D01D083)the Tianchi Talent Introduction Project of Xinjiang Uygur Autonomous Region.We thank Mr.LI Yonggang,Mrs.DU Fang,Mrs.SHEN Hui,Mrs.PAN Qi,and Mrs.MENG Huanhuan for providing help with the experiment in the field.
文摘Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.
基金supported by the National Natural Science Foundation of China (U22A20477 and 32201791)the China Postdoctoral Science Foundation (2020M682440)the Postdoctoral Fellowship Program of CPSF (GZB20230825).
文摘Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular mechanisms controlling inflorescence architecture are poorly understood,restricting the progress of breeding varieties with ideal plant architecture in oilseed rape.In this study,we have identified and characterized a rapeseed inflorescence development mutant,reduced inflorescence length(ril),which exhibits determinate and shortened inflorescences,reduced plant height,compact branches,and increased silique density.Through BSA-seq and map-based cloning,we find that RIL encodes a cyclic nucleotide-gated channel 20(BnaA01.CNGC20).A substitution of proline at the 304th position to leucine(P304L)was identified in the conserved transmembrane domain of BnaA01.CNGC20.This P304L substitution neither affects the subcellular localization and self-assembly of BnaA01.CNGC20,nor disrupts the interactions with BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1(BAK1),which interacts with CNGC20 and phosphorylates it to regulate Ca^(2+)channel stability.However,the P304L substitution increases channel activity and Ca^(2+)influx,which in turn induces immune responses such as cell death,H2O2 accumulation,upregulation of pathogenesis-related genes,and pattern-triggered immunity.The enhanced immunity improves the resistance to Leptosphaeria biglobosa and Sclerotinia sclerotiorum.Transcriptome analysis further revealed that CNGC20 plays dual roles in regulating plant growth and immunity via the brassinosteroid and auxin signaling pathways.The findings in this study provide deeper insights into the intricate relationship between cytosolic Ca^(2+)level and plant development and immunity,as well as the trade-off between immunity and the performance of yield-related traits in the heterozygous plants(+/ril),which may serve as a guide for balancing yield and disease resistance in oilseed rape breeding.
文摘With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.