Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully...Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring.展开更多
Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection...Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection in China is preferred by species traits(i.e.,plant height,flowering and fruiting period),environmental range(i.e.,the temperature and precipitation range)and geographical range(i.e.,distribution range and altitudinal range).Ordinary least squares models and phylogenetic generalized linear mixed models were used to analyze the relationships between specimen number and the explanatory variables.Random Forest models were then used to find the most parsimonious multivariate model.The results showed that interannual variation in specimen number between 1900 and 2020 was considerable.Specimen number of these species in southeast China was notably lower than that in northwest China.Environmental range and geographical range of species had significant positive correlations with specimen number.In addition,there were relatively weak but significant associations between specimen number and species trait(i.e.,plant height and flowering and fruiting period).Random Forest models indicated that distribution range was the most important variable,followed by flowering and fruiting period,and altitudinal range.These findings suggest that future floristic surveys should pay more attention to species with small geographical range,narrow environmental range,short plant height,and short flowering and fruiting period.The correction of specimen collection preference will also make the results of species distribution model,species evolution and other works based on specimen data more accurate.展开更多
Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose...Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.展开更多
Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utiliza...Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utilization of human beings,and the decline of breeding ability,the number of individuals in the population has decreased significantly.Through field investigation and literature review,the research status of M.ventii in systematics,conservation ecology,reproductive biology,genetic diversity,endangered mechanism and resource protection at home and abroad are systematically reviewed.And the future research direction is prospected.It is necessary to strengthen the research on the basic characteristics of M.ventii,explore the transmission route of M.ventii and deepen the development and utilization of resources,in order to provide a theoretical support for the protection and sustainable utilization of germplasm resources of M.ventii,and provide a reference for the protection of other wild plant species with extremely small populations.展开更多
Using the plant of roof garden as an object, the effect of application of plant species, growth status, and health evaluation on the construction of roof garden in east area of Zhengzhou were investigated through the ...Using the plant of roof garden as an object, the effect of application of plant species, growth status, and health evaluation on the construction of roof garden in east area of Zhengzhou were investigated through the investigation and analysis in order to put forward the main problems of each plant species and select the suitable plant species and configuration. The results indicated that there was no significant difference between the roof garden greening plants and ground greening plant species, however, there was a big problem in terms of plant disease and root aeration. And so the root shallow, barren resistance, wind resistance, drought-tolerant plants were appropriately chosen in the construction of roof garden, in which low small trees, shrubs, ground cover, and climbing plants was given priority to.展开更多
Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qingha...Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.展开更多
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhab...The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.展开更多
Gene flow between sympatric congeneric plants is thought to be very common and may pose serious threats to endangered species.In the present study,we evaluate the genetic diversity and divergence of three sympatric Rh...Gene flow between sympatric congeneric plants is thought to be very common and may pose serious threats to endangered species.In the present study,we evaluate the genetic diversity and divergence of three sympatric Rhododendron species in Jiaozi Mountain using newly developed microsatellites through the Illumina MiSeq sequencing approach.Genetic diversity of all three Rhododendron species studied was moderate in comparison to genetic parameters previously reported from species of this genus.Interestingly,genetic structure analysis of the three species identified a possible hybrid origin of the threatened Rh.pubicostatum.This sympatry should be considered a unimodal hybrid zone,since Rh.pubicostatum is predominant here.Unimodal hybrid zones are uncommon in Rhododendron,despite the fact that hybridization frequently occurs in the genus.Issues pertaining to the conservation of Rh.pubicostatum resulting from admixture of genetic material from its parental species are discussed.展开更多
Wetland restoration had been implemented for more than two decades in Sanjiang Plain,Northeast China.To assess the restoration effi ciency of wetland vegetation,we investigated plants composition of community,plant sp...Wetland restoration had been implemented for more than two decades in Sanjiang Plain,Northeast China.To assess the restoration effi ciency of wetland vegetation,we investigated plants composition of community,plant species diversity and aboveground biomass of restored sites in a chronosequence of restoration(1,2,3,6,8,11,15 and 25 years)in the Sanjiang Nature Reserve.As comparison,we also investigated the same factors in a cropland and a natural marsh adjacent to the restored sites.The results showed that wetland plant species can invade quickly after croplands were abandoned when there were suitable hydrology conditions.On the early stage of the restoration,weeds were main plant species in the restored sites.Wetland species appeared at the same time but diff ered from the dominant species from the adjacent natural marshes.Common native wetland species could dominance the community after 3-year restoration.Species richness and diversity increased on the early stage,and then decreased to the similar level of the natural marsh with the extension of restoration.Plant biomass could restore easier than the species composition and diversity.Our results indicated that plant species composition and diversity of abandoned reclaimed wetlands can restore gradually by natural succession in Sanjiang Plain.However,25-year restoration site had similarity index of only 56%with the natural marsh,which revealed that two decades are not enough for complete restoration of vegetation.展开更多
Twenty-three secondary forest communities with different structure were selected in Mao'er Mountain National Park of Heilongjiang Province, China to study the relationship between diversity of forest plant species an...Twenty-three secondary forest communities with different structure were selected in Mao'er Mountain National Park of Heilongjiang Province, China to study the relationship between diversity of forest plant species and environmental gradient. The forest plant species diversity was analyzed by the diversity index, and the environmental factors was quantified by the method of Whittaker's quantification of environmental gradient. Meanwhile, β-diversity indexes of communities were calculated with similar measurements. The results showed that the Shannon-wiener diversity index of forest plant species increased with the increase of the environmental gradient, and the β-diversity indexes of communities showed a liner increase along with the change of environmental gradient.展开更多
Plants in natural ecosystems are exposed to a combination of UV radiation,ionizing radiation(IR)and other abiotic factors.These factors change with the altitude.We investigated DNA alterations of some wild plants of d...Plants in natural ecosystems are exposed to a combination of UV radiation,ionizing radiation(IR)and other abiotic factors.These factors change with the altitude.We investigated DNA alterations of some wild plants of different plant families in natural ecosystems at three altitudes in Rila Mountain,Bulgaria(1500,1782,and 2925 m above sea level(a.s.l.)exposed to UV radiation,IR and other abiotic stresses,to assess the tolerance of plant species to the changing environmental conditions in three successive growth seasons.For this purpose,physicochemical,cytogenetic,and molecular methods were applied.DNA damage was assessed by micronucleus test and molecular method comet assay adapted and applied by us to wild plant species from Onagraceae,Rosaceae,Boraginaceae,Saxifragaceae,Orobanchaceae,Asteraceae and Poaceae families,growing at three different altitudes.Variability in the DNA sensitivity and the level of tolerance was observed among the plant species in response to combined abiotic factors assessed by induced DNA damage and gross beta activity.The studied representatives of Poaceae were less susceptible than the other studied species at all three altitudes and showed close level of DNA injuries to that of unaffected control plant grown in laboratory conditions.The lower levels of DNA damage of these wild plant species corresponded to their lower ability to accumulate radionuclides.There was a particularly pronounced low level of DNA injuries in the plant species at the highest altitude.The level of DNA damage showed correlation with the values of some abiotic environmental factors.The results would contribute to the elucidation of the extent of adaptation of plant species to the continuously changing environment and would be useful in selecting sensitive herbaceous monitor species for environmental impact assessment at mountain and alpine sites.展开更多
In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjian...In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjiang,including 22 species of trees,18 species of shrubs and 35 species of herbs.The habitats are mainly in extremely cold,extremely dry or extremely narrow conditions such as snow line,desert,mountain,wetland and so on.②53 species(70.67%)are listed as national or autonomous region protected plants,and 22 species of PSESP are not listed in the protection;there are 70 species of PSESP listed in the red list,accounting for 93.33%.③The PSESP in Xinjiang are mainly distributed in the Altai Mountains,western Tianshan Mountains,Pamir Plateau and Karakoram Mountains;they are distributed in all kinds of nature reserves,forest parks,wetland parks and other natural ecological protection areas in Xinjiang.Ammopiptanthus nanus(M.Pop.)Cheng F.,Cistanche tubulosa(Schenk)Wight,Calligonum roborovskii A.Los.and Prunus cerasifera Ehrhart have not been found in the literature,indicating that they are distributed in protected areas.In order to provide a theoretical basis for the conservation of biodiversity in Xinjiang,this paper puts forward some suggestions on the protection of PSESP.展开更多
A successful management and preservation of the natural populations is depending on accurate assessment of genetic diversity. Knowledge of genetic diversity within a population is important for the conservation of the...A successful management and preservation of the natural populations is depending on accurate assessment of genetic diversity. Knowledge of genetic diversity within a population is important for the conservation of the species. Our aim was to assess the genetic diversity in Draba dorneri Heuff. population (Brassicaceae family)—an endemic plant species of conservative interest using Random Amplified Polymorphic DNA (RAPD) technique. The plant species is strictly protected at national level as well as at international level through “Convention on the Conservation of European Wildlife and Natural Habitats”, Bern, 1979 European Council. In this study, a total of 52 primers were scored initially. A total of 77 repro- ducible bands with an average of 6.41 bands per primer were obtained from the 12 primers selected. A cluster analysis (UPGAMA) was used to generate a dendrogram based on Dice coefficient. We found 67% similarity between the samples from the two analyzed slopes. Comparing with other rare plants species, our data revealed a higher level of genetic diversity in D. dorneri population in Retezat Mountains.展开更多
Invasive plant species may significantly alter plant species community composition and structure thereby negatively impacting on ecosystem services. Their impacts on plant communities may be both direct and indirect. ...Invasive plant species may significantly alter plant species community composition and structure thereby negatively impacting on ecosystem services. Their impacts on plant communities may be both direct and indirect. The direct effects may include a reduction in the abundance and diversity of palatable plant species that constitute important forage for livestock, wildlife, and medicines for the local communities. Declines in ecosystem resilience are of the notable indirect effects of invasive species. The aim of this study was to assess the impacts of a plant species, copper leaf (<em>Acalypha fruticosa</em>) on floral diversity and abundance at Chemeron, Baringo County in Kenya. The study was guided by three questions: What is the plant composition in terms of grasses, herbs, shrubs, and trees in the study area? Are there any variations in plant abundance between the two sites (sites with and without <em>Acalypha fruticosa</em>)? Are there variations in plant species diversity between the two study sites? Two sites (one with <em>A. fruticosa</em> and another two without this invasive species) were selected within the Chemeron Research Centre. Two belt transects measuring 100 m × 20 m on each site were laid parallel to each other. Plant samples were collected from five 1 m × 1 m quadrats that were laid at intervals of 20 m. The plant species or specimens were identified to the species level using available taxonomic keys. Various indices including Shannon-Wiener (<em>H</em>’), Evenness Index, Richness Index and Simpson’s Index of Diversity Index (SDI) were calculated. All the diversity, richness and evenness indices were considerably higher in the site without <em>A. fruticosa</em> compared to that where this invasive species was present. Higher <em>H’</em> (3.14 to 3.21) and SDI (0.93 to 0.94) values were noted in sites without the invasive species compared to <em>H</em>’ (2.11 to 2.20) and SDI (0.77 to 0.85) in sites with <em>A. fruticosa</em> present. Out of the 47 plant species identified, 39 and 20 of them occurred in the site without and with <em>A. fruticosa</em>, respectively. Further, there were more grasses (<em>Aristida keniensis</em>, <em>Cynodon dactylon</em>, <em>Brachiaria lucrantha</em>, <em>Eragrostis racemosa</em>, and <em>Enteropogon macrostachyus</em>) in the site without <em>A. fruticosa</em> compared to that with the invasive plant. The plants were also more evenly distributed in the site without <em>A. fruticosa</em> compared to that where the invasive plant was present. We conclude that <em>A. fruticosa</em> has a significant effect on plant species abundance and diversity as well as distribution. Its removal created a favourable environment for the growth of a variety of grasses. We therefore recommend to the agro-pastoralists and rangeland managers that <em>A. fruticosa</em> be mechanically removed by uprooting from grazing lands so as to increase forage availability and quality in the rangelands of South-Baringo.展开更多
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi...Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.展开更多
One hundred and sixty plots, approximately every 100 m above sea level (a.s.1.) along an altitudinal gradient from 470 to 3 080 m a.s.1, at the southern and northern watershed of Mt. Shennongjia, China, were examine...One hundred and sixty plots, approximately every 100 m above sea level (a.s.1.) along an altitudinal gradient from 470 to 3 080 m a.s.1, at the southern and northern watershed of Mt. Shennongjia, China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the “mid-altitude bulge” was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1500 m a.s.1.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.1. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt. Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a hypothesis about the altitudinal pattern of plant species diversity in eastern China is proposed.展开更多
The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in veg...The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in vegetation across various parts of the desert. Two-way Cluster Analysis showed that the vegetation in the area could be divided into three groups, the first group was dominated by the shrub species, Ephedra przewalskii and the grass species, Carex physodes mainly in areas of flat grounds and gentle slopes; the second group was dominated by C. physodes, Artemisia songorica and A. xerophytica mainly on the slope of sand dunes and the third group was dominated by the shrub species, Haloxylon persicum mainly on the top of sand dunes. There was no difference in plant density between Groups 1 and 2 but there was a significant decrease in Group 3. Soil water under vegetation Group 3 was much lower than that in the other two groups at all soil depths. The EC, organic matter, total P and soluble Na, Ca and Mg varied very similarly with soil water. Canonical corre- spondence analysis (CCA) satisfactorily assessed the species-soil relations in the area. The distribution of plant species was strongly correlated with the soil factors of water content, organic matter, EC and nutrients. The variations in species occurrence explained by the three CCA axes were about 70%, indicating that some explanatory site variables may exist outside our studied parameters. Soil texture is suggested to be included in future studies to improve the explanation of CCA.展开更多
A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, lengthxwidthx...A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, lengthxwidthxdepth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands. Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communis Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.展开更多
Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence,...Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.展开更多
This study presents a novel approach to evaluate the rate of aggregate risk of Invasive Alien Plant Species. Using risk values and grade of importance of weights of risk factors which may reflect invasiveness of plant...This study presents a novel approach to evaluate the rate of aggregate risk of Invasive Alien Plant Species. Using risk values and grade of importance of weights of risk factors which may reflect invasiveness of plant species are considered. We use Linguistic Ordered Weighted Averaging operator to evaluate the grade of important of weights. Since the risk values and important weights are identified from two different linguistic term sets, fuzzy set theory techniques were used to combine the two sets. The rates obtained from the model were compared with NRA risk levels and the model was validated with data from known and non-invasive species. The model is improved by weighting the risk values of risk factors. The improved model produced significant results and resulted a better tracking system for identifying potential invaders than the conventional risk assessment.展开更多
基金supported by the National Technology Extension Fund of Forestry,Forest Vegetation Carbon Storage Monitoring Technology Based on Watershed Algorithm ([2019]06)Fundamental Research Funds for the Central Universities (No.PTYX202107).
文摘Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring.
基金the Natural Science Foundation of Inner Mongolia,China(2023JQ01)the National Key R&D Program of China(2019YFA0607103)+2 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2022ZY0224)the Open Project Program of Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau,Hohhot,Inner Mongolia,China(KF2023003)Major Science and Technology Project of Inner Mongolia Autonomous Region:Monitoring,Assessment and Early Warning Technology Research of Biodiversity in Inner Mongolia(2021ZD0011)for financial support.
文摘Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection in China is preferred by species traits(i.e.,plant height,flowering and fruiting period),environmental range(i.e.,the temperature and precipitation range)and geographical range(i.e.,distribution range and altitudinal range).Ordinary least squares models and phylogenetic generalized linear mixed models were used to analyze the relationships between specimen number and the explanatory variables.Random Forest models were then used to find the most parsimonious multivariate model.The results showed that interannual variation in specimen number between 1900 and 2020 was considerable.Specimen number of these species in southeast China was notably lower than that in northwest China.Environmental range and geographical range of species had significant positive correlations with specimen number.In addition,there were relatively weak but significant associations between specimen number and species trait(i.e.,plant height and flowering and fruiting period).Random Forest models indicated that distribution range was the most important variable,followed by flowering and fruiting period,and altitudinal range.These findings suggest that future floristic surveys should pay more attention to species with small geographical range,narrow environmental range,short plant height,and short flowering and fruiting period.The correction of specimen collection preference will also make the results of species distribution model,species evolution and other works based on specimen data more accurate.
文摘Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.
基金Supported by National Natural Science Foundation of China(31960069).
文摘Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utilization of human beings,and the decline of breeding ability,the number of individuals in the population has decreased significantly.Through field investigation and literature review,the research status of M.ventii in systematics,conservation ecology,reproductive biology,genetic diversity,endangered mechanism and resource protection at home and abroad are systematically reviewed.And the future research direction is prospected.It is necessary to strengthen the research on the basic characteristics of M.ventii,explore the transmission route of M.ventii and deepen the development and utilization of resources,in order to provide a theoretical support for the protection and sustainable utilization of germplasm resources of M.ventii,and provide a reference for the protection of other wild plant species with extremely small populations.
基金Supported by Science&Technology Key Program of Education Department of Henan Province(14B220001)~~
文摘Using the plant of roof garden as an object, the effect of application of plant species, growth status, and health evaluation on the construction of roof garden in east area of Zhengzhou were investigated through the investigation and analysis in order to put forward the main problems of each plant species and select the suitable plant species and configuration. The results indicated that there was no significant difference between the roof garden greening plants and ground greening plant species, however, there was a big problem in terms of plant disease and root aeration. And so the root shallow, barren resistance, wind resistance, drought-tolerant plants were appropriately chosen in the construction of roof garden, in which low small trees, shrubs, ground cover, and climbing plants was given priority to.
基金supported by the National Natural Science Foundation of China (40671181, 30870396)the Chinese Academy of Sciences (KZCX2-YW-418, KZCX2-XB2-02)+1 种基金the Ministry of Science & Technology of China (2006BAC01A15, 2006BAC01A11)the Science & Technology Bureau of Sichuan, China (03ZQ026-043)
文摘Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.
文摘The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.
基金Science and Technology Basic Resources Investigation Program of China(Grant No.2017FY100100)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant No.2019QZKK0502)+2 种基金the Young Academic and Technical Leader Raising Foundation of Yunnan Province(No.2018HB066)Yunnan Innovation Team Program for Conservation and Utilization of PSESP(Plant Species with Extremely Small Populations)(Grant No.2019HC015)Applied Basic Research Project of Yunnan Province(Grant No.2018BB010).
文摘Gene flow between sympatric congeneric plants is thought to be very common and may pose serious threats to endangered species.In the present study,we evaluate the genetic diversity and divergence of three sympatric Rhododendron species in Jiaozi Mountain using newly developed microsatellites through the Illumina MiSeq sequencing approach.Genetic diversity of all three Rhododendron species studied was moderate in comparison to genetic parameters previously reported from species of this genus.Interestingly,genetic structure analysis of the three species identified a possible hybrid origin of the threatened Rh.pubicostatum.This sympatry should be considered a unimodal hybrid zone,since Rh.pubicostatum is predominant here.Unimodal hybrid zones are uncommon in Rhododendron,despite the fact that hybridization frequently occurs in the genus.Issues pertaining to the conservation of Rh.pubicostatum resulting from admixture of genetic material from its parental species are discussed.
基金the National Natural Science Foundation of China(31870443)the Fundamental Research Funds for the Central Universities(2572016CA03)the Heilongjiang Postdoctoral Funds(LBH-Z16014).
文摘Wetland restoration had been implemented for more than two decades in Sanjiang Plain,Northeast China.To assess the restoration effi ciency of wetland vegetation,we investigated plants composition of community,plant species diversity and aboveground biomass of restored sites in a chronosequence of restoration(1,2,3,6,8,11,15 and 25 years)in the Sanjiang Nature Reserve.As comparison,we also investigated the same factors in a cropland and a natural marsh adjacent to the restored sites.The results showed that wetland plant species can invade quickly after croplands were abandoned when there were suitable hydrology conditions.On the early stage of the restoration,weeds were main plant species in the restored sites.Wetland species appeared at the same time but diff ered from the dominant species from the adjacent natural marshes.Common native wetland species could dominance the community after 3-year restoration.Species richness and diversity increased on the early stage,and then decreased to the similar level of the natural marsh with the extension of restoration.Plant biomass could restore easier than the species composition and diversity.Our results indicated that plant species composition and diversity of abandoned reclaimed wetlands can restore gradually by natural succession in Sanjiang Plain.However,25-year restoration site had similarity index of only 56%with the natural marsh,which revealed that two decades are not enough for complete restoration of vegetation.
基金Foundation project: The paper was supported by National Natural Science Foundation of China (39899370).
文摘Twenty-three secondary forest communities with different structure were selected in Mao'er Mountain National Park of Heilongjiang Province, China to study the relationship between diversity of forest plant species and environmental gradient. The forest plant species diversity was analyzed by the diversity index, and the environmental factors was quantified by the method of Whittaker's quantification of environmental gradient. Meanwhile, β-diversity indexes of communities were calculated with similar measurements. The results showed that the Shannon-wiener diversity index of forest plant species increased with the increase of the environmental gradient, and the β-diversity indexes of communities showed a liner increase along with the change of environmental gradient.
基金This work was supported by a grant of the National Science Fund of the Republic of Bulgaria under Project No.DN 04/1,13.12.2016 entitled:“Study of the combined effect of the natural radioactivity background,the UV radiation,the climate changes and the cosmic rays on model groups of plant and animal organisms in mountain ecosystems”.
文摘Plants in natural ecosystems are exposed to a combination of UV radiation,ionizing radiation(IR)and other abiotic factors.These factors change with the altitude.We investigated DNA alterations of some wild plants of different plant families in natural ecosystems at three altitudes in Rila Mountain,Bulgaria(1500,1782,and 2925 m above sea level(a.s.l.)exposed to UV radiation,IR and other abiotic stresses,to assess the tolerance of plant species to the changing environmental conditions in three successive growth seasons.For this purpose,physicochemical,cytogenetic,and molecular methods were applied.DNA damage was assessed by micronucleus test and molecular method comet assay adapted and applied by us to wild plant species from Onagraceae,Rosaceae,Boraginaceae,Saxifragaceae,Orobanchaceae,Asteraceae and Poaceae families,growing at three different altitudes.Variability in the DNA sensitivity and the level of tolerance was observed among the plant species in response to combined abiotic factors assessed by induced DNA damage and gross beta activity.The studied representatives of Poaceae were less susceptible than the other studied species at all three altitudes and showed close level of DNA injuries to that of unaffected control plant grown in laboratory conditions.The lower levels of DNA damage of these wild plant species corresponded to their lower ability to accumulate radionuclides.There was a particularly pronounced low level of DNA injuries in the plant species at the highest altitude.The level of DNA damage showed correlation with the values of some abiotic environmental factors.The results would contribute to the elucidation of the extent of adaptation of plant species to the continuously changing environment and would be useful in selecting sensitive herbaceous monitor species for environmental impact assessment at mountain and alpine sites.
基金Supported by Basic Scientific Research Business Funds of Public Welfare Scientific Research Institutes of the Autonomous Region in 2022 (kyys202201)
文摘In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjiang,including 22 species of trees,18 species of shrubs and 35 species of herbs.The habitats are mainly in extremely cold,extremely dry or extremely narrow conditions such as snow line,desert,mountain,wetland and so on.②53 species(70.67%)are listed as national or autonomous region protected plants,and 22 species of PSESP are not listed in the protection;there are 70 species of PSESP listed in the red list,accounting for 93.33%.③The PSESP in Xinjiang are mainly distributed in the Altai Mountains,western Tianshan Mountains,Pamir Plateau and Karakoram Mountains;they are distributed in all kinds of nature reserves,forest parks,wetland parks and other natural ecological protection areas in Xinjiang.Ammopiptanthus nanus(M.Pop.)Cheng F.,Cistanche tubulosa(Schenk)Wight,Calligonum roborovskii A.Los.and Prunus cerasifera Ehrhart have not been found in the literature,indicating that they are distributed in protected areas.In order to provide a theoretical basis for the conservation of biodiversity in Xinjiang,this paper puts forward some suggestions on the protection of PSESP.
基金The study in Retezat Mountains was supported financially by Conservation of bio-and geodiversity,as support of sustainable development and economic and social growth in Hateg County—Retezat area,Project RO 0023(RO-00056 MF SEE).
文摘A successful management and preservation of the natural populations is depending on accurate assessment of genetic diversity. Knowledge of genetic diversity within a population is important for the conservation of the species. Our aim was to assess the genetic diversity in Draba dorneri Heuff. population (Brassicaceae family)—an endemic plant species of conservative interest using Random Amplified Polymorphic DNA (RAPD) technique. The plant species is strictly protected at national level as well as at international level through “Convention on the Conservation of European Wildlife and Natural Habitats”, Bern, 1979 European Council. In this study, a total of 52 primers were scored initially. A total of 77 repro- ducible bands with an average of 6.41 bands per primer were obtained from the 12 primers selected. A cluster analysis (UPGAMA) was used to generate a dendrogram based on Dice coefficient. We found 67% similarity between the samples from the two analyzed slopes. Comparing with other rare plants species, our data revealed a higher level of genetic diversity in D. dorneri population in Retezat Mountains.
文摘Invasive plant species may significantly alter plant species community composition and structure thereby negatively impacting on ecosystem services. Their impacts on plant communities may be both direct and indirect. The direct effects may include a reduction in the abundance and diversity of palatable plant species that constitute important forage for livestock, wildlife, and medicines for the local communities. Declines in ecosystem resilience are of the notable indirect effects of invasive species. The aim of this study was to assess the impacts of a plant species, copper leaf (<em>Acalypha fruticosa</em>) on floral diversity and abundance at Chemeron, Baringo County in Kenya. The study was guided by three questions: What is the plant composition in terms of grasses, herbs, shrubs, and trees in the study area? Are there any variations in plant abundance between the two sites (sites with and without <em>Acalypha fruticosa</em>)? Are there variations in plant species diversity between the two study sites? Two sites (one with <em>A. fruticosa</em> and another two without this invasive species) were selected within the Chemeron Research Centre. Two belt transects measuring 100 m × 20 m on each site were laid parallel to each other. Plant samples were collected from five 1 m × 1 m quadrats that were laid at intervals of 20 m. The plant species or specimens were identified to the species level using available taxonomic keys. Various indices including Shannon-Wiener (<em>H</em>’), Evenness Index, Richness Index and Simpson’s Index of Diversity Index (SDI) were calculated. All the diversity, richness and evenness indices were considerably higher in the site without <em>A. fruticosa</em> compared to that where this invasive species was present. Higher <em>H’</em> (3.14 to 3.21) and SDI (0.93 to 0.94) values were noted in sites without the invasive species compared to <em>H</em>’ (2.11 to 2.20) and SDI (0.77 to 0.85) in sites with <em>A. fruticosa</em> present. Out of the 47 plant species identified, 39 and 20 of them occurred in the site without and with <em>A. fruticosa</em>, respectively. Further, there were more grasses (<em>Aristida keniensis</em>, <em>Cynodon dactylon</em>, <em>Brachiaria lucrantha</em>, <em>Eragrostis racemosa</em>, and <em>Enteropogon macrostachyus</em>) in the site without <em>A. fruticosa</em> compared to that with the invasive plant. The plants were also more evenly distributed in the site without <em>A. fruticosa</em> compared to that where the invasive plant was present. We conclude that <em>A. fruticosa</em> has a significant effect on plant species abundance and diversity as well as distribution. Its removal created a favourable environment for the growth of a variety of grasses. We therefore recommend to the agro-pastoralists and rangeland managers that <em>A. fruticosa</em> be mechanically removed by uprooting from grazing lands so as to increase forage availability and quality in the rangelands of South-Baringo.
基金funding this work through the Research Group Program under the Grant Number:(R.G.P.2/382/44).
文摘Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.
文摘One hundred and sixty plots, approximately every 100 m above sea level (a.s.1.) along an altitudinal gradient from 470 to 3 080 m a.s.1, at the southern and northern watershed of Mt. Shennongjia, China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the “mid-altitude bulge” was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1500 m a.s.1.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.1. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt. Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a hypothesis about the altitudinal pattern of plant species diversity in eastern China is proposed.
文摘The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in vegetation across various parts of the desert. Two-way Cluster Analysis showed that the vegetation in the area could be divided into three groups, the first group was dominated by the shrub species, Ephedra przewalskii and the grass species, Carex physodes mainly in areas of flat grounds and gentle slopes; the second group was dominated by C. physodes, Artemisia songorica and A. xerophytica mainly on the slope of sand dunes and the third group was dominated by the shrub species, Haloxylon persicum mainly on the top of sand dunes. There was no difference in plant density between Groups 1 and 2 but there was a significant decrease in Group 3. Soil water under vegetation Group 3 was much lower than that in the other two groups at all soil depths. The EC, organic matter, total P and soluble Na, Ca and Mg varied very similarly with soil water. Canonical corre- spondence analysis (CCA) satisfactorily assessed the species-soil relations in the area. The distribution of plant species was strongly correlated with the soil factors of water content, organic matter, EC and nutrients. The variations in species occurrence explained by the three CCA axes were about 70%, indicating that some explanatory site variables may exist outside our studied parameters. Soil texture is suggested to be included in future studies to improve the explanation of CCA.
基金Supported by the National Natural Science Foundation of China (30470346) and the National Natural Science Foundation of Guangdong Province (021082, 06025056).Acknowledgements The authors thank Dr Thomas Dreschel Thomas and two anonymous reviewers for their comments on the manuscript.
文摘A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, lengthxwidthxdepth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands. Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communis Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.
文摘Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.
文摘This study presents a novel approach to evaluate the rate of aggregate risk of Invasive Alien Plant Species. Using risk values and grade of importance of weights of risk factors which may reflect invasiveness of plant species are considered. We use Linguistic Ordered Weighted Averaging operator to evaluate the grade of important of weights. Since the risk values and important weights are identified from two different linguistic term sets, fuzzy set theory techniques were used to combine the two sets. The rates obtained from the model were compared with NRA risk levels and the model was validated with data from known and non-invasive species. The model is improved by weighting the risk values of risk factors. The improved model produced significant results and resulted a better tracking system for identifying potential invaders than the conventional risk assessment.